Repository logo
 

Faculty of Applied Sciences

Permanent URI for this communityhttp://ir-dev.dut.ac.za/handle/10321/5

Browse

Search Results

Now showing 1 - 10 of 19
  • Thumbnail Image
    Item
    Influence of temperature on molecular interactions of imidazolium-based ionic liquids with acetophenone: thermodynamic properties and quantum chemical studies
    (Royal Society of Chemistry, 2016) Bahadur, Indra; Masilo, Kgomotso; Ebenso, Eno, E.; Redhi, Gan G.
    The physicochemical properties namely: densities (ρ), sound velocities (u), viscosities (η), and refractive indices (nD) of a series of alkyl imidazolium-based ionic liquids (ILs) with same cation and different anion and vice versa of ILs: 1-butyl-3-methylimidazolium tetrafluoroborate [BMIM]+[BF4]−, 1-butyl-3-methylimidazolium hexafluorophosphate [BMIM]+[PF6]−, 1-ethyl-3-methylimidazoium ethyl sulphate [EMIM]+[EtSO4]− and 1-ethyl-3-methylimidazolium tetrafluoroborate [EMIM]+[BF4]−, with acetophenone over the wide range of composition and at (293.15, 303.15, 313.15, 323.5 and 333.15) K under atmospheric pressure is reported in this study. The excess molar volumes, (VEm), deviation in isentropic compressibilities (Δκs), deviation in viscosities (Δη) and deviation in refractive indices (ΔnD) were derived from experimental results. The VEm, Δκs and ΔnD values for the mentioned systems are both negative and positive over the entire composition range while the Δη values are negative under the same experimental conditions. The derived properties were fitted to the Redlich–Kister polynomial equation to check the accuracy of experimental results. Furthermore, the inter-ionic interactions between the cations and anions of the ILs both in vacuo and in acetophenone (using continuum solvation) were confirmed using quantum chemical technique such as [Density Functional Theory (DFT)]. The quantum chemical results are in good agreement with the experimental results suggesting that there exist appreciable interactions between the ILs and acetophenone. The theoretical and measured data were interpreted in terms of intermolecular interfaces and structural effects between similar and dissimilar molecules upon mixing in order to obtain more information on the thermophysical and thermodynamic properties of ILs and their binary mixtures. This study will contribute to the data bank of thermodynamic properties of IL mixtures, so as to establish principles for the molecular design for chemical separation processes and to enhance the applications of ILs in certain aspects of research or industrial application.
  • Thumbnail Image
    Item
    Synthesis and characterization of 2′,3′-epoxy propyl-N-methyl-2-oxopyrrolidinium salicylate ionic liquid and study of its interaction with water or methanol
    (Royal Society of Chemistry, 2016) Vasanthakumar, Arumugam; Bahadur, Indra; Redhi, Gan G.; Gengan, Robert Moonsamy
    Important physico-chemical properties of ionic liquids (ILs) can be manipulated by adjusting the nature of the cation or anion. These properties are exploited in applications such as organic synthesis, catalysis and electrochemical processes to mention a few. In this work, the novel pyrrolidone ionic liquid N-(2′,3′-epoxypropyl)-N-methyl-2-oxopyrrolidinium salicylate [EPMpyr]+[SAL]− was synthesized using two steps and characterized. The temperature dependent density and speed of sound for ionic liquid, methanol, water, and their corresponding binary mixtures of {IL (1) + methanol or water (2)} were measured over the entire range of mole fractions at temperatures from T = (293.15 to 313.15) K in steps of 5 K, under atmospheric pressure. The calculated thermodynamic properties such as excess molar volume VEm, isentropic compressibility ks, intermolecular free length Lf, and deviation in isentropic compressibility Δks, were derived from the investigated density and speed of sound data. The resulting experimental data for excess molar volumes VEm, intermolecular free length Lf, and deviation in isentropic compressibility Δks, were well fitted to the Redlich–Kister polynomial equation. The effect of temperature and concentration on thermophysical properties was also provided.
  • Item
    Synthesis, characterization and thermophysical properties of ionic liquid N-methyl-N-(2′,3′-epoxypropyl)-2-oxopyrrolidinium chloride and its binary mixtures with water or ethanol at different temperatures
    (Elsevier, 2016) Vasanthakumar, Arumugam; Bahadur, Indra; Redhi, Gan G.; Gengan, Robert Moonsamy; Anand, Krishnan
    A novel ionic liquid, namely, N-methyl-N-(2′,3′-epoxypropyl)-2-oxopyrrolidiniumchloride [Epmpyr]+[Cl]− was synthesized and characterized by different techniques such as NMR (1H and 13C), FTIR, and elemental analysis. The water content of the ionic liquid was checked by Karl Fisher titration. Further, the density, ρ, and speed of sound, u, were measured for the above ionic liquid and the corresponding binary systems with water or ethanol at different temperatures ranging from (293.15 to 313.15) K. The derived thermodynamic properties for instance excess molar volumes, VE m isentropic compressibility, κs, and deviation in isentropic compressibility, Δκs, were investigated from the density and speed of sound data, respectively. It is noted that density and speed of sound of the ionic liquid and its binary mixtures were decreased with increase in temperature, whereas excess molar volume, isentropic compressibility, and deviation in isentropic compressibility values increased. Derived properties such as excess molar volumes, and deviation in isentropic compressibility data were fitted to the Redlich-Kister polynomial equation. The measured and calculated data were interpreted in terms of intermolecular interfaces and structural effects between similar and dissimilar molecules upon mixing.
  • Item
    Application of 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl) imide ionic liquid for the different types of separations problem: Activity coefficients at infinite dilution measurements using gas-liquid chromatography technique
    (Elsevier, 2016) Singh, Sangeeta; Bahadur, Indra; Naidoo, Paramespri; Ramjugernath, Deresh
    The present work focussed on application of the environmental friendly 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl) imide ([BMIM]+[Tf2N]−) ionic liquid for the separations of (alkane/aromatic), (al-kane/alk-1-ene), (cycloalkane/aromatic) and (water/alkan-1-ol) using gas-liquid chromatography (GLC) tech-nique. In this reason the activity coefficients at infinite dilution, γ∞13, for 31 organic solutes (alkanes, cycloalkanes, alkenes, alkynes, aromatics, alkanol and ketones) and water in ionic liquid were measured at temper-atures of (323.15, 333.15, 343.15, 353.15 and 363.15) K. Stationary phase loadings of (42.83 and 68.66) % by mass were used to ensure repeatability of measurements. Density and viscosity values were measured to confirm the purity of ionic liquid. Partial molar excess enthalpies at infinite dilution, ΔH1,∞, were also determined. The selectiv-ities, Sij∞, and capacities, kj∞, were determined for the above separations. The separating ability of the investigated ionic liquid was compared with previously investigated ionic liquids and industrial solvents such as sulfolane, n-methyl-2-pyrrolidine (NMP) and n-formylmorpholine (NFM).
  • Item
    Industrial application of ionic liquids for the recoveries of spent paint solvent
    (Elsevier, 2016) Moodley, Kandasamy; Mabaso, Mbongeni Hezekia; Bahadur, Indra; Redhi, Gan G.
    The recovery of industrially valuable organic solvents from liquid waste, generated in chemical processes, is economically crucial to countries which need to import organic solvents. In view of this, the main objective of this study was to determine the ability of selected ionic liquids, namely, 1-ethyl-3-methylimidazolium ethylsulphate, [EMIM][ESO4] and 1-ethyl-3-methylpyridinium ethylsulphate, [EMpy][ESO4] to recover aromatic components from spent paint solvents. Preliminary studies done on the liquid waste, received from a paint manufacturing company, showed that the aromatic components were present in the range of (6–21)% by volume. The separation of the aromatic components was performed with the ionic liquids listed above. The phases, resulting from the separation of the mixtures, were analysed with a gas chromatograph (GC) coupled to a FID detector. Chromatograms illustrate that the chosen ZB-Wax-Plus column gave excellent separation of all components of interest from the mixtures, including the isomers of xylene. The concentrations of aromatics recovered from the spent solvents were found to be in the % ranges of (13 − 33) and (23–49), respectively for imidazolium and pyridinium based ionic liquids. These results also show that there is a significant correlation between π-character of ionic liquids and the level of extraction. It is therefore concluded that ionic liquids have the potential for macro-scale recovery of re-useable solvents present in liquid waste emanating from paint manufacture.
  • Thumbnail Image
    Item
    Volumetric, acoustic and refractive index for the binary system (Butyric acid + Hexanoic acid) at different temperatures
    (Springer, 2014-04-12) Bahadur, Indra; Deenadayalu, Nirmala; Naidoo, Paramespri; Ramjugernath, Deresh
    In this paper density, sound velocity, and refractive index for the binary system (butyric acid ? hexanoic acid) were measured over the entire composition range and at 5 K intervals in the temperature range 293.15–313.15 K. The excess molar volumes, isentropic compressibilities, excess isentropic compressibilities, deviation in refractive indices, molar refractions, and deviation in molar refractions were calculated by using the experimental densities, sound velocities, and refractive indices, respectively. The Redlich–Kister equation was used to fit the excess molar volume, excess isentropic compressibility, deviation in refractive index and deviation in molar refraction data. The Lorentz–Lorenz approximation was used to correlate the excess molar volume from the deviation in refractive index and also to predict the density from refractive index or the refractive index from density of the binary mixtures. Four sound velocity mixing rules were tested and the best model for the systems studied in this work was the Berryman mixing rule. The thermodynamic properties are discussed in terms of intermolecular interactions between the components of the mixtures.
  • Item
    Separation of aromatic solvents from oil refinery reformates by a newly designed ionic liquid using gas chromatography with flame ionization detection
    (Wiley Online Library, 2015-02-26) Bahadur, Indra; Singh, Prashanth; Kumar, Sudharsan; Moodley, Kandasamy; Mabaso, Mbongeni Hezekia; Redhi, Gan G.
    The aim of this study was to determine whether the new ionic liquid, N,N-dimethyl-2-oxopyrrolidonium iodide, synthesized in our laboratory is a suitable solvent for the separation of aromatic components benzene, toluene, ethylbenzene, and xylenes from petroleum mixtures (reformates) in liquid–liquid extraction. In pursuance of the above aim, a method to extract all components of a mixture, containing four aromatic components simultaneously, was developed. A new ionic liquid and a previously used liquid were compared for their extraction abilities. These ionic liquids were, respectively, N,N-dimethyl-2-oxopyrrolidinium iodide and 1-ethyl-3-methyl imidazolium ethyl sulfate. The concentrations of each benzene, toluene, ethylbenzene, and xylenes component in the extract and raffinate phases were measured by gas chromatography with flame ionization detection as volume percent to determine the extraction ability of the ionic liquids. The results obtained for both the reformate samples and model mixtures indicated that the new ionic liquid was effective as an extracting solvent for the recovery of aromatic components from reformates. Also the analysis results, using gas chromatography with flame ionization detection, for the reformate samples were as good as the results obtained by a local oil refinery. The extraction results also show that the developed method is very suitable for the separation and analysis of aromatic components in reformates.
  • Item
    Phase equilibria measurements of ternary mixtures (sulfolane + a carboxylic acid + pentane) at 303.15 K
    (Elsevier, 2015) Xhakaza, Nokukhanya Mavis; Bahadur, Indra; Redhi, Gan G.; Ebenso, Eno E.
    The Liquid–liquid equilibrium (LLE) data for the mixtures of {sulfolane (1) + a carboxylic acid (2) + pentane (3)} at 303.15 K are reported, where a carboxylic acid refers to acetic acid, propanoic acid, butanoic acid, 2-methylpropanoic acid, pentanoic acid and 3-methylbutanoic acid. The shape of the binodal curves show that the solubility of pentane in (sulfolane + a carboxylic acid) is very much dependent on the carbon number and the type of carboxylic acid. The area of the two phase heterogeneous region for the carboxylic mixtures decreases in the order of acetic acid > propanoic acid > 2-methylpropanoic acid ∼ butanoic acid > pentanoic acid ∼ 3-methylbutanoic acid. Three parameter equations have been fitted to the binodal curve data. The NRTL and UNIQUAC models were used to correlate the experimental data. The NRTL model fitted the experimental data better than the UNIQUAC model with the average mean square deviation of 0.072 mole fraction as compared to 0.359 mole fraction for UNIQUAC model.
  • Item
    Influence of the alkyl group on thermophysical properties of carboxylic acids in 1-butyl-3-methylimidazolium thiocyanate ionic liquid at various temperatures
    (Elsevier, 2015) Redhi, Gan G.; Ebenso, Eno E.; Singh, Suren; Bahadur, Indra; Ramjugernath, Deresh
    In the present study, influence of the alkyl group and temperature on the interactions between the carboxylic acid and ionic liquid (IL) mixtures were discussed in term of density and sound velocity measurements. The IL used in this study was 1-butyl-3-methylimidazolium thiocyanate ([BMIM]+[SCN]−). The density (ρ), and sound velocity (u), of the IL, acetic acid, propionic acid, and their corresponding binary systems {[BMIM]+[SCN]− (x1) + acetic or propionic acid (x2)} have been measured at T = (293.15, 298.15, 303.15, 308.15 and 313.15) K and at p = 0.1 MPa. The excess molar volumes, View the MathML sourceVmE, isentropic compressibility, κs, and deviation in isentropic compressibility, Δκs, were calculated using experimental density and sound velocity data, respectively. The Redlich–Kister polynomial equation was used to fit the excess/deviation properties. These results are useful for describing the intermolecular interactions that exist between the IL and carboxylic acid mixtures.
  • Item
    Liquid–liquid equilibria measurements of ternary systems (acetonitrile + a carboxylic acid + dodecane) at 303.15 K
    (Elsevier, 2015) Redhi, Gan G.; Bahadur, Indra; Xhakaza, Nokukhanya Mavis
    Liquid–liquid equilibrium (LLE) data are reported for the ternary mixtures of (acetonitrile + a carboxylic acid + dodecane) at 303.15 K under atmospheric pressure, where a carboxylic acid refers to acetic acid, propanoic acid, butanoic acid, 2-methylpropanoic acid, pentanoic acid and 3-methylbutanoic acid. The area of the two-phase heterogeneous region for the carboxylic acid mixtures decreases in the order: acetic acid > propanoic acid > butanoic acid > 2-methylbutanoic acid > pentanoic acid > 3-methylbutanoic acid. The relative mutual solubility of each of the carboxylic acids is higher in acetonitrile layer than in dodecane layer. Three 3-parameter equations have been fitted to the binodal curve data. The NRTL and UNIQUAC models were used to correlate the experimental data. The NRTL model fitted the experimental data far better than the UNIQUAC model with the average mean square deviation of 0.0030 mole fraction as compared to 0.2870 mole fraction for UNIQUAC. Selectivity values for solvent separation efficiency were calculated from the tie-line data and show that separation of carboxylic acids from dodecane is feasible by extraction with acetonitrile.