Repository logo
 

Faculty of Applied Sciences

Permanent URI for this communityhttp://ir-dev.dut.ac.za/handle/10321/5

Browse

Search Results

Now showing 1 - 2 of 2
  • Item
    PKR-inhibitor binds efficiently with human microtubule affinity-regulating kinase 4
    (Elsevier, 2015) Naz, Farha; Shahbaaz, Mohd; Khan, Shama; Bisetty, Krishna; Islam, Asimul; Ahmad, Faizan; Hassan, Md. Imtaiyaz
    MAP/microtubule affinity-regulating kinase 4 (MARK4) plays a central role in the cellular physiology, and it is inseparably linked with many human diseases including cancer, diet induced obesity, type2 diabetes and neurodegenerative disorders. Here, we studied the interaction of PKR-inhibitor with two variants of human MARK4. One variant is named as MARK4-F1 which has 59 N-terminal residues along with kinase domain while another variant is MARK4-F2 which has kinase domain only. Molecular-docking, molecular dynamics (MD) simulation and fluorescence-binding studies were undertaken to understand the role of N-terminal 59-residues in the binding of substrate/inhibitors. Molecular docking studies revealed that the PKR-inhibitor binds in the large hydrophobic cavity of the kinase domain of MARK4 through several hydrophobic and hydrogen-bonded interactions. Furthermore, MD simulation showed a stable param-eters for the complexes of both MARK4-F1 and MARK4-F2 to PKR-inhibitor with marginal difference in their binding affinities. A significant decrease in the fluorescence intensity of MARK4 was observed on successive addition of the PKR-inhibitor. Using fluorescence data we have calculated the binding-affinity and the number of binding site of PKR-inhibitor to the MARK4. A significantly high binding affinity was observed for the PKR-inhibitor to the MARK4 variants. However, there is no any significant difference in the binding affinity of PKR-inhibitor to the MARK4 variants was observed, indicating that 59 N-terminal residues of MARK4-F1 are not playing a crucial role in the ligand binding. The present study will pro-vide an insights into designing of new PKR-inhibitor derivative as potent and selective therapeutic agent against many life threatening diseases which are associated with MARK4.
  • Thumbnail Image
    Item
    Designing new kinase inhibitor derivatives as therapeutics against common complex diseases : structural basis of microtubule affinity-regulating kinase 4 (MARK4) inhibition
    (Mary Ann Liebert, Inc., 2015) Naz, Farha; Shahbaaz, Mohd; Bisetty, Krishna; Islam, Asimul; Ahmad, Faizan; Hassan, Md. Imtaiyaz
    Drug development for common complex diseases is in need of new molecular entities and actionable drug targets. MAP/microtubule affinity-regulating kinase 4 (MARK4) is associated with numerous diseases such as neurodegenerative disorders, obesity, cancer, and type 2 diabetes. Understanding the structural basis of ligands’ (inhibitors) and substrates’ binding to MARK4 is crucial to design new kinase inhibitors for therapeutic pur-poses. This study reports new observations on docking three well-known kinase inhibitors in the kinase domain of MARK4 variants and the calculated binding affinity. These variants of MARK4 are named as MARK4-F1 (59 N-terminal residues along with kinase domain) and MARK4-F2 (kinase domain of MARK4). We addi-tionally performed molecular dynamics (MD) simulation and fluorescence binding studies to calculate the actual binding affinity of kinase inhibitors, BX-912, BX-795, and OTSSP167 (hydrochloride) for the MARK4. Docking analyses revealed that ligands bind in the large hydrophobic cavity of the kinase domain of MARK4 through several hydrophobic and hydrogen-bonded interactions. Simulations suggested that OTSSP167 (hy-drochloride) is forming a stable complex, and hence the best inhibitor of MARK4. Intrinsic fluorescence of MARK4 was significantly quenched by addition of ligands, indicating their potential binding to MARK4. A lower KD value of MARK4 with OTSSP167 (hydrochloride) suggested that it is a better interacting partner than BX-912 and BX-795. These data form a basis for designing novel and potent OTSSP167 (hydrochloride) derivatives as therapeutic candidates against common complex diseases. The inhibitors designed as such might possibly suppress the growth of tumor-forming cells and be potentially applied for treatment of a wide range of human cancers as well.