Faculty of Applied Sciences
Permanent URI for this communityhttp://ir-dev.dut.ac.za/handle/10321/5
Browse
2 results
Search Results
Item Novel Dithiocarbamates for electrochemical detection of Nickel (II) in environmental samples(Asian Publication Corporation, 2015-06-22) Niranjan, T.; Kanchi, Suvardhan; Bisetty, Krishna; Naidu, N. VenkatasubbaAmmonium 4-phenylpiperazine-1-dithiocarbamate (Amm 4-PP-DTC) and ammonium 4-benzylpiperidine-1-dithiocarbamate (Amm 4-BP-DTC) were synthesized for the determination of nickel(II) using catalytic hydrogen currents (CHC’s) technique with DC Polarography. The method was based on the chelation of nickel(II) with Amm 4-PP-DTC/ Amm 4-BP-DTC in presence of NH 4 OH at pH 6.8 to produce catalytic hydrogen current at -1.50V and -1.41 V vs. SCE respectively. Optimized polarographic conditions were established by studying effect of pH, supporting electrolyte (NH4Cl), ligands and metal ion concentration and effect of adverse ions on peak height to improve the sensitivity, selectivity and detection limits of the present method. This technique is successfully applied for the analysis of nickel(II) in different matrices with recoveries ranging from 96.0-99.0 % and the results obtained were comparable with the atomic absorption spectroscopy.Item The polarographic study of Cobalt(II)-dithiocarbamate complexes at DME(IJCAS, 2014) Giridhar, C.; Kanchi, Suvardhan; Niranjan, T.; Naidu, N. VenkatasubbaCobalt is a naturally occurring element in the earth’s crust. It is a very small part of our environment and very small amounts are needed for many animals and humans to stay healthy. Cobalt poisoning can occur when exposed to large amounts of cobalt. The aim of this study was to develop a facile, rapid, robust, sensitive and selective methodology for the determination of cobalt(II). Two new ligands, ammonium 2,6-dimethyl morpholine dithiocarbamate (ADMM-DTC) and ammonium 3-methyl piperdine dithiocarbamate (AMP-DTC) were synthesized in the laboratory. The method was based on chelation of cobalt(II) with ADMM-DTC/AMP-DTC in presence of NH4OH at pH 7.2 and 8.2 to produce catalytic hydrogen currents at -1.28 V and -1.38 V vs SCE respectively and prior detected by D.C polarography. Optimized polarogaphic conditions were established by studying effect of pH, supporting electrolyte (NH4Cl), ligand & metal ion concentrations and effect of adverse ions on peak height to improve the sensitivity, selectivity and detection limits of the present method. This technique is successfully applied for the analysis of cobalt(II) in different matrices with recoveries ranging from 93- 98 % and the results obtained were comparable with the differential pulse polarography (DPP).