Repository logo
 

Faculty of Applied Sciences

Permanent URI for this communityhttp://ir-dev.dut.ac.za/handle/10321/5

Browse

Search Results

Now showing 1 - 3 of 3
  • Thumbnail Image
    Item
    Anti-microbial activity of phenolic extracts from Virgilia oroboides and Chlorophora excelsa
    (2000) Padayachee, Thiriloshani; Odhav, Bharti
    This study focussed on the anti-bacterial, anti-fungal and anti-protozoal activity of four plant extracts, maackiain and formononetin from Virgilia oroboides and chlorophorin and lroko from Chlorophora excelsa
  • Thumbnail Image
    Item
    Antimicrobial activity of plant phenols from Chlorophora excelsa and Virgilia oroboides
    (Academic Journals, 2013-04-24) Padayachee, Thiriloshani; Odhav, Bharti
    The anti-bacterial and anti-fungal activity of four aqueous plant extracts (1 x 104 µg/ml) of 2,3'4,5'-tetra hydroxy-4'-geranylstilbene (chlorophorin) and 3',4, 5' - trihydroxy - 4' - geranylstilbene (Iroko) from the tree Chlorophora excelsa and (6aR,11aR)-3-hydroxy-8,9-methylenedioxypterocarpan (Maackiain) and 7-hydroxy-4'-methoxyisoflavone (formononetin) from Virgilia oroboides were evaluated by the seeded agar overlay well diffusion method. The test organisms and bioautography used included: Bacillus coagulans, Streptococcus pneumoniae, Klebsiella pneumoniae, Escherichia coli, Mycobacteria tuberculosis, Aspergillus flavus and Fusarium verticilloides. Vancomycin, the drug of choice for these organisms was used as the control at 30 µg/ml. The extracts showed that chlorophorin at 1.95 µg/ml and Iroko at 3.125 and 6.25 µg/ml respectively were active in inhibiting the growth of S. pneumoniae and B. coagulans and not active against K. pneumoniae and E. coli. Maackiain; formononetin and formononetin acetate showed little activity against S. pneumonia, B. coagulans, K. pneumoniae and E. coli. None of the extracts showed activity against M. tuberculosis. Maackiain, formononetin, chlorophorin and Iroko inhibited F. vertiicilloides, maackiain being the most active compound. Formononetin, chlorophorin and Iroko inhibited A. flavus. A. flavus was most sensitive to chlorophorin and Iroko. The bioautography method confirmed these results and was attributed to the phenolic nature of the compounds.
  • Thumbnail Image
    Item
    Application of thermostable a-Amylase from Thermomyces lanuginosus ATCC 58157 to nutritionally enhance starch based food
    (2006) Padayachee, Thiriloshani
    In Sub-Saharan Africa there is an urgent need to sustain and improve the quality of its food resources. Poverty eradication features high on the agenda of a number of world health organisations, while the number of underweight children in Africa continues to increase (Pellet, 1996). Providing nutritionally enhanced foods to the poor will help towards achieving this objective. Protein-energy malnutrition has been identified as one of the most important problems facing Africa, with maize as the staple diet (Nkama et al., 1995). However, a combination of several factors limits availability and the nutritional quality of maize. During starvation, energy and protein intakes decrease by 20-30%, with most of the children in Africa having an average protein intake of only 20 g per day (Igbedioh, 1996). Energy availability also affects protein utilization because of interrelationships of protein and energy metabolism (Elwyn, 1993). The diets of inhabitants in developing regions depend mainly on cereals (maize) for both protein and dietary energy which lacks indispensable amino acids, minerals, vitamins and carbohydrates. In light of these growing concerns an attempt was made to devise a scientific strategy to combat the nutritional shortfalls of maize meal. A multidisciplinary and concerted approach was followed within this project aimed at designing an improved thermostable amylase and applying the enzyme to nutritionally enhance maize meal. It was envisaged that the manipulation of maize meal, by the application of enzyme technology will improve the nutritional status of this staple food. The consequences is that an alternate solution for the eradication of an ailing, poverty stricken and malnourished African population is achievable. It is possible that the boundaries defining the limits of life will extend to even greater extremes through the application of novel technologies.