Faculty of Applied Sciences
Permanent URI for this communityhttp://ir-dev.dut.ac.za/handle/10321/5
Browse
2 results
Search Results
Item Application of 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl) imide ionic liquid for the different types of separations problem: Activity coefficients at infinite dilution measurements using gas-liquid chromatography technique(Elsevier, 2016) Singh, Sangeeta; Bahadur, Indra; Naidoo, Paramespri; Ramjugernath, DereshThe present work focussed on application of the environmental friendly 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl) imide ([BMIM]+[Tf2N]−) ionic liquid for the separations of (alkane/aromatic), (al-kane/alk-1-ene), (cycloalkane/aromatic) and (water/alkan-1-ol) using gas-liquid chromatography (GLC) tech-nique. In this reason the activity coefficients at infinite dilution, γ∞13, for 31 organic solutes (alkanes, cycloalkanes, alkenes, alkynes, aromatics, alkanol and ketones) and water in ionic liquid were measured at temper-atures of (323.15, 333.15, 343.15, 353.15 and 363.15) K. Stationary phase loadings of (42.83 and 68.66) % by mass were used to ensure repeatability of measurements. Density and viscosity values were measured to confirm the purity of ionic liquid. Partial molar excess enthalpies at infinite dilution, ΔH1,∞, were also determined. The selectiv-ities, Sij∞, and capacities, kj∞, were determined for the above separations. The separating ability of the investigated ionic liquid was compared with previously investigated ionic liquids and industrial solvents such as sulfolane, n-methyl-2-pyrrolidine (NMP) and n-formylmorpholine (NFM).Item Ternary excess molar volumes of {methyltrioctylammonium bis(trifluoromethylsulfonyl)imide + ethanol + methyl acetate, or ethyl acetate} systems at T = (298.15, 303.15, and 313.15) K(Elsevier, 2010-01-28) Gwala, Nobuhle V.; Deenadayalu, Nirmala; Tumba, Kaniki; Ramjugernath, DereshThe activity coefficient at infinite dilution for 30 solutes: alkanes, alkenes, cycloalkanes, alkynes, ketones, alcohols, and aromatic compounds was determined from gas–liquid chromatography (glc) measurements at three temperatures (303.15, 313.15, and 323.15) K. The ionic liquid: trioctylmethylammonium bis(trifluoromethylsulfonyl)imide, was used as the stationary phase. For each temperature, values were determined using two columns with different mass percent packing of the ionic liquid. The selectivity value was calculated from the to determine the suitability of the solvent as a potential entrainer for extractive distillation in the separation of an hexane/benzene mixture, indicative of a typical industrial separation problem for benchmarking purposes.