Repository logo
 

Faculty of Applied Sciences

Permanent URI for this communityhttp://ir-dev.dut.ac.za/handle/10321/5

Browse

Search Results

Now showing 1 - 2 of 2
  • Item
    PKR-inhibitor binds efficiently with human microtubule affinity-regulating kinase 4
    (Elsevier, 2015) Naz, Farha; Shahbaaz, Mohd; Khan, Shama; Bisetty, Krishna; Islam, Asimul; Ahmad, Faizan; Hassan, Md. Imtaiyaz
    MAP/microtubule affinity-regulating kinase 4 (MARK4) plays a central role in the cellular physiology, and it is inseparably linked with many human diseases including cancer, diet induced obesity, type2 diabetes and neurodegenerative disorders. Here, we studied the interaction of PKR-inhibitor with two variants of human MARK4. One variant is named as MARK4-F1 which has 59 N-terminal residues along with kinase domain while another variant is MARK4-F2 which has kinase domain only. Molecular-docking, molecular dynamics (MD) simulation and fluorescence-binding studies were undertaken to understand the role of N-terminal 59-residues in the binding of substrate/inhibitors. Molecular docking studies revealed that the PKR-inhibitor binds in the large hydrophobic cavity of the kinase domain of MARK4 through several hydrophobic and hydrogen-bonded interactions. Furthermore, MD simulation showed a stable param-eters for the complexes of both MARK4-F1 and MARK4-F2 to PKR-inhibitor with marginal difference in their binding affinities. A significant decrease in the fluorescence intensity of MARK4 was observed on successive addition of the PKR-inhibitor. Using fluorescence data we have calculated the binding-affinity and the number of binding site of PKR-inhibitor to the MARK4. A significantly high binding affinity was observed for the PKR-inhibitor to the MARK4 variants. However, there is no any significant difference in the binding affinity of PKR-inhibitor to the MARK4 variants was observed, indicating that 59 N-terminal residues of MARK4-F1 are not playing a crucial role in the ligand binding. The present study will pro-vide an insights into designing of new PKR-inhibitor derivative as potent and selective therapeutic agent against many life threatening diseases which are associated with MARK4.
  • Item
    In silico approaches for the identification of virulence candidates amongst hypothetical proteins of Mycoplasma pneumoniae 309
    (Elsevier, 2015) Shahbaaz, Mohd; Bisetty, Krishna; Ahmad, Faizan; Hassan, Md. Imtaiyaz
    Mycoplasma pneumoniae type 2a strain 309 is a simplest known bacterium and is the primary cause of community acquired pneumonia in the children. It mainly causes severe atypical pneumonia as well as several other non-pulmonary manifestations such as neurological, hepatic, hemolytic anemia, cardiacdiseases and polyarthritis. The size of M. pneumoniae genome (Accession number: NC_016807.1) is relatively smaller as compared to other bacteria and contains 707 functional proteins, in which 204 are classified as hypothetical proteins (HPs) because of the unavailability of experimentally validated functions. The functions of the HPs were predicted by integrating a variety of protein classification systems, motif discovery tools as well as methods that are based on characteristic features obtained from the protein sequence and metabolic pathways. The probable functions of 83HPs were predicted successfully. The accuracy of the diverse tools used in the adopted pipeline was evaluated on the basis of statistical techniques of Receiver Operating Characteristic (ROC), which indicated the reliability of the functional predictions. Furthermore, the virulent HPs present in the set of 83 functionally annotated proteins were predicted by using the Bioinformatics tools and the conformational behaviours of the proteins with highest virulence scores were studied by using the molecular dynamics (MD) simulations. This study will facilitate in the better understanding of various drug resistance and pathogenesis mechanisms present in the M. pneumoniae and can be utilized in designing of better therapeutic agents.