Faculty of Applied Sciences
Permanent URI for this communityhttp://ir-dev.dut.ac.za/handle/10321/5
Browse
5 results
Search Results
Item Thermo-physical properties and activity coefficients at infinite dilution for ionic liquid systems at several temperatures(2017) Singh, Sangeeta; Redhi, Gyanasivan Govindsamy; Ramjugernath, DereshThe thermodynamic properties of mixtures involving ionic liquids (ILs) with organic acid (acetic acid or propanoic acid) or acetonitrile at different temperatures were determined. The ILs used were imidazolium-based: 1-ethyl-3-methylimidazolium ethyl sulphate [EMIM]+[EtSO4]-, 1-butyl- 3-methylimidazolium thiocyanate [BMIM]+[SCN]- and 1-butyl-3-methylimidazolium bis (trifluoromethylsulfonyl) imide ([BMIM]+[Tf2N]-. The ternary excess molar volume (V E ), isentropic compressibility (ks) and deviation in isentropic compressibility ( ks123 ) were determined for four ternary liquid mixtures of {[EMIM]+[EtSO4]- or [BMIM]+[SCN]− + acetic or propionic acid + acetonitrile} at different temperatures (293.15, 298.15, 303.15, 308.15 and 313.15) K and at a pressure of 0.1 MPa with aid of the experimental density (ρ), speed of sound (u) data. The calculated data were correlated by using the Cibulka equation with the help of Redlich–Kister parameters obtained from fitting the Redlich–Kister equation for the corresponding binary systems. Furthermore, the density and speed of sound were also measured for eight corresponding binary systems at the same experimental conditions. The binary excess molar volume, isentropic compressibility and deviation in isentropic compressibility were also calculated for measured systems and fitted to the Redlich–Kister equation to obtain the Redlich–Kister parameters as well as to check the accuracy of measured data which were used to correlated experimental data using Cibulka equation. These results were discussed, in terms of how the sign and magnitude of thermodynamic functions were influenced by the addition of a third component to liquid systems. Also, the possible molecular and pair-wise interactions between component molecules and the effect of temperature on the thermophysical and thermodynamic properties were predicted. In addition, the work focussed on application of ([BMIM]+[Tf2N]-) ionic liquid for the separations of (alkane/aromatic), (alkane/alk-1-ene), (cycloalkane/aromatic) and (water/alkan-1-ol) using gas- liquid chromatography (GLC) technique. The activity coefficients at infinite dilution, , for 31 organic solutes (alkanes, cycloalkanes, alkenes, alkynes, aromatics, alkanol and ketones) and water in ionic liquid were measured at temperatures of (323.15, 333.15, 343.15, 353.15 and 363.15) K. Stationary phase loadings of (42.83 and 68.66) % by mass were used to ensure repeatability of E , measurements. Partial molar excess enthalpies at infinite dilution, H1 , were also determined. The selectivities, S , and capacities, k , were determined for the above separations. The separating ij j ability of the investigated ionic liquid was compared with previously investigated ionic liquids and industrial solvents such as sulfolane, n-methyl-2-pyrrolidine (NMP) and n-formylmorpholine (NFM). The results obtained suggested that in general, the [BMIM]+[Tf2N]− had outperformed the conventional solvents such as sulfolane, NMP and NFM in terms of selectivity, while the [BMIM][Tf2N] had in general, performed better overall when the performance index was used for comparison.Item Excess molar volumes of binary mixtures (an ionic liquid + water) : A review(Elsevier, 2015-03) Bahadur, Indra; Singh, Sangeeta; Redhi, Gan G.; Venkatesu, Pannuru; Letcher, Trevor M.This review covers recent developments in the area of excess molar volumes for mixtures of {ILs (1) + H2O (2)} where ILs refers to ionic liquids involving cations: imidazolium, pyridinium, pyrrolidinium, piperidinium, morpholinium and ammonium groups; and anions: tetraborate, triflate, hydrogensulphate, methylsulphate, ethylsulphate, thiocyanate, dicyanamide, octanate, acetate, nitrate, chloride, bromide, and iodine. The excess molar volumes of aqueous ILs were found to cover a wide range of values for the different ILs (ranging from −1.7 cm3 · mol−1 to 1.2 cm3 · mol−1). The excess molar volumes increased with increasing temperature for all systems studied in this review. The magnitude and in some cases the sign of the excess molar volumes for all the aqueous ILs mixtures, apart from the ammonium ILs, were very dependent on temperature. This was particularly important in the dilute IL concentration region. It was found that the sign and magnitude of the excess molar volumes of aqueous ILs (for ILs with hydrophobic cations), was more dependent on the nature of the anion than on the cation.Item Effect of temperature on density, sound velocity, refractive index and their derived properties for the binary systems (heptanoic acid + propanoic or butanoic acids)(Elsevier, 2014-06-14) Bahadur, Indra; Naidoo, Paramespri; Singh, Sangeeta; Ramjugernath, Deresh; Deenadayalu, NirmalaIn this work, the effect of temperature on density (q), sound velocity (u), refractive index (n) and their derived properties for carboxylic acid mixtures was studied. The thermophysical properties: density, sound velocity and refractive index were measured over the entire composition range at T = (293.15, 298.15, 303.15, 308.15 and 313.15) K and at p = 0.1 MPa for the binary systems (heptanoic acid + propa-noic or butanoic acids). The mass fraction of water was found to be unusually large and could not be reduced further. The Lorentz–Lorenz approximation was used to predict the density from refractive index or the refractive index from density of the binary mixtures. Sound velocity mixing rules were applied to the experimental sound velocity data. Excess molar volumes, VEm; isentropic compressibilities, js, excess isentropic compressibilities, jsE, and deviation in refractive indices, Dn, were also calculated from the experimental data. The Redlich–Kister polynomial equation was fitted to the excess properties and the deviation in refractive index data. Thermophysical properties are useful in understanding the intermolecular interactions between the components of mixtures.Item Influence of alkyl group and temperature on thermophysical properties of carboxylic acid and their binary mixtures(Elsevier B.V., 2014-06-30) Bahadur, Indra; Deenadayalu, Nirmala; Naidoo, Paramespri; Ramjugernath, Deresh; Singh, Sangeetan this work, volumetric, acoustic and refractive index methods have been used to study the interactions between carboxylic acids mixtures as a function of temperature and concentration. The density (r), sound velocity (u), refractive index (n) of butanoic acid, pentanoic acid and heptanoic acid and their binary systems (butanoic or heptanoic acid + pentanoic acid) have been measured at 293.15, 298.15, 303.15, 308.15 and 313.15 K and at p = 0.1 MPa. The Lorentz–Lorenz approximation and sound velocity mixing rules were used to test the accuracy of the experimental data. The derived properties such as excess molar volumes, VEm, isentropic compressibilities, ks, excess isentropic compressibilities, ksE, and deviation in refractive indices, Dn, were also calculated. The Redlich–Kister polynomial equation was used to fit the excess/deviation properties. These results are useful for describing the intermolecular interactions that exist between the components in mixtures. This work also tests various sound velocity mixing rules to calculate the sound velocity of the binary mixture from pure component data, as well as examine the use of the Lorentz–Lorenz approximation to predict density from refractive index and vice versa.Item Correlation and prediction of the physical and excess properties of the ionic liquid 1-butyl-3-methylimidazolium methyl sulphate with several alcohols at T= (298.15 to 313.15) K(2013-07-30) Singh, Sangeeta; Deenadayalu, NirmalaThe thermodynamic properties of binary liquid mixtures using an ionic liquid (IL) with alcohols were determined at different temperatures. The ionic liquid used was 1-butyl-3- methylimidazolium methylsulphate [BMIM]+[MeSO4]-. Densities, speed of sound, and refractive indices for the binary mixtures ([BMIM]+[MeSO4]- + methanol, or 1-propanol, or 2-propanol, or 1-butanol) were experimentally measured over the whole range of composition at T = (298.15, E 303.15, 308.15, and 313.15) K. From the experimental data, excess molar volumes, V m , E , deviations in refractive isentropic compressibilities, κ s , excess isentropic compressibilities, κ S indices, ∆n, and molar refractions, R, were calculated. The excess partial molar volumes were also calculated at T = 298.15 K. For the binary systems, ([BMIM]+[MeSO4]- + methanol, or 1-propanol, or 2-propanol, or E E E 1-butanol) V m and κ S are always negative and V m decrease slightly when the temperature increases. The refractive index deviation at T = (298.15, 303.15, 308.15, and 313.15) K is positive over the whole composition range. The measured negative values for excess molar volume of these mixtures ([BMIM]+[MeSO4]- + methanol, or 1-propanol, or 2-propanol, or 1-butanol) indicate strong ion-dipole interactions and packing between alcohols and IL are present. The Redlich-Kister smoothing polynomial equation was satisfactorily applied for the E E fitting of the V m , κ S , and ∆n data to give the fitting parameters and the root-mean-square deviations. The Lorentz-Lorenz (L-L) equation was also used to correlate the volumetric property and predict the density or refractive index of the binary mixtures of ionic liquid and the organic solvents. The Lorentz-Lorenz approximation gives a higher σ when used to correlate the iiiexcess molar volumes for the mixtures ([BMIM]+[MeSO4]- + methanol, or 1-propanol, or 2-propanol, or 1-butanol). The L-L equation gives good results for the prediction of density and refractive index. The results are discussed in terms of solute-solute, solute-solvent and solvent- solvent interactions.