Repository logo
 

Faculty of Applied Sciences

Permanent URI for this communityhttp://ir-dev.dut.ac.za/handle/10321/5

Browse

Search Results

Now showing 1 - 2 of 2
  • Thumbnail Image
    Item
    Survival analysis of patients with multidrug-resistant tuberculosis in KwaZulu-Natal, South Africa : a comparison of cox regression and parametric models
    (Common Ground Research Networks, 2024-06-21) Mbona, Sizwe Vincent; Mwambi, Henry; Ramroop, Shaun; Chifurira, Retius
    Researchers in medical sciences often prefer the Cox semi-parametric model instead of parametric models because of its restrictive distributional assumptions, but under certain circumstances, parametric models estimate the parameters more efficiently and powerful than the Cox model. The objective of this study was to compare the Cox and parametric models by studying a dataset of patients diagnosed with multidrug-resistant tuberculosis (MDR-TB). A total of 1 542 patients were included in the study from four decentralised sites located in rural areas and one centralised hospital in KwaZulu-Natal, South Africa from 1 July 2008 to 30 July 2012. Out of 1 542 patients with MDR-TB, 886 (57.5%) were cured and 245 (15.9%) died. According to the AIC, the Lognormal and Weibull regression models were the best fitting to data and the Cox regression model was the weakest. According to the results from parametric models, baseline weight of patients had an increased risk of death in both univariate and multivariate analysis. Patients with ages 31 – 40, 41 - 50 and >50 years at diagnosis had an increased risk for death in Cox proportional hazards model. In univariate analysis the data strongly supported the Lognormal regression among parametric models, while in multivariate analysis Weibull and Lognormal are approximately similar, according to Akaike Information Criterion. Although it seems that there may not be a single model that is substantially better than others, Lognormal is the most favorable as an alternative to Cox for identifying risk factors for patients with MDR-TB.
  • Thumbnail Image
    Item
    Identifying factors that affect the probability of being cured from MDR-TB disease, KwaZulu-Natal, South Africa : a competing risks analysis
    (Scientific Research Publishing, Inc., 2022) Mbona, Sizwe Vincent; Mwambi, Henry; Chifurira, Retius
    Four decentralised sites are located in rural areas and one centralised hospital in KwaZulu-Natal province, South Africa. Objective: To analyse risk factors associated with multidrug-resistant tuberculosis (MDR-TB) using com peting risks analysis. Understanding factors associated with MDR-TB and obtaining valid parameter estimates could help in designing control and in tervention strategies to lower TB mortality. Method: A prospective study was performed using a competing risk analysis in patients receiving treatment for MDR-TB. The study focused on 1542 patients (aged 18 years and older) who were diagnosed of MDR-TB between July 2008 and June 2010. Time to cure MDR-TB was used as the dependent variable and time to death was the com peting risk event. Results: The Fine-Gray regression model indicated that base line weight was highly significant with sub-distribution hazard ration (SHR) = 1.02, 95% CI: 1.01 - 1.02. This means that weight gain in a month increased chances of curing MDR-TB by 2%. Results show that lower chances to cure MDR-TB were among patients between 41 to 50 years compared to those pa tients who were between 18 to 30 years old (SHR = 0.80, 95% CI: 0.61 - 1.06). The chances of curing MDR-TB in female patients were low compared to male patients (SHR = 0.84, 95% CI = 0.68 - 1.03), however this was not sig nificant. Furthermore, HIV negative patients had higher chances to cure MDR-TB (SHR = 1.07, 95% CI: 0.85 - 1.35) compared to HIV positive pa tients. Patients who were treated in the decentralised sites had lower chances to be cured of MDR-TB (SHR = 0.19, 95% CI: 0.07 - 0.54) as compared to pa tients who were treated in the centralised hospital. Conclusion: Identifying key factors associated with TB and specifying strategies to prevent them can reduce mortality of patients due to TB disease, hence positive treatment out comes leading to the goal of reducing or end TB deaths. Urgent action is re quired to improve the coverage and quality of diagnosis, treatment and care for people with drug-resistant TB.