Repository logo
 

Faculty of Applied Sciences

Permanent URI for this communityhttp://ir-dev.dut.ac.za/handle/10321/5

Browse

Search Results

Now showing 1 - 6 of 6
  • Thumbnail Image
    Item
    Production of oligosaccharides from lignocellulosic biomass
    (2020) Arumugam, Nanthakumar; Pillai, Santosh Kumar Kuttan; Singh, Suren
    Lignocellulosic biomass is the most abundant plant material present on earth which is primarily composed of cellulose, hemicellulose and lignin. The composition of lignocellulosic biomass varies depending on the type of plant material and the conditions at which the plant grow. Exploration of lignocellulose for the production of value-added compounds including all types of platform chemicals, biofuels and bioactive compounds is gaining momentum. However, extensive research needs to the carried out to minimize the cost of production to make the processing of this biomass more viable. In the last two decades, several agricultural biomass types have been studied to facilitate the production of biochemicals and biofuels at a low cost. Biomass such as peanut shells, bambara, cowpea and sorghum are some of the indigenous crops of South Africa that are yet to be explored for value addition. Therefore, this study was designed to characterize the underutilized agro-residues such as peanut shell, bambara, cowpea and sorghum biomass for the enzymatic production of prebiotic xylooligosaccharides (XOS) and their application.
  • Thumbnail Image
    Item
    Extraction and characterisation of cellulose nanocrystals (CNCs) from sugarcane bagasse using ionic liquids
    (2019) Mdletshe, Gcinile Pretty; Deenadayalu, Nirmala; Suprakas, S.
    Lignocellulosic materials have the potential to partly replace fossil-based resources as a source of bio-fuels, bio-chemicals, bio-composites and other bio-products. In this study, ionic liquids (ILs) were used in the pre-treatment of ground sugarcane bagasse (SCB). The ILs used were 1-butyl-3-methylimidazolium hydrogen sulphate or 1-butyl-3-methylimidazolium methyl sulphate at varied times. The ILs were able to remove lignin and hemicellulose from biomass. The IL [bmim][HSO4] had the highest amount of lignin removed after 12 h than all samples. Moreover, it resulted in the greatest cellulose amount. Milled SCB was pre-treated with IL/dimethyl sulphoxide (DMSO) mixtures. The IL [bmim][HSO4] was able to produce cellulose nanocrystals (CNCs) at 90 % IL and 100 % IL. The other IL failed to produce CNCs. Freeze drying the CNC suspension showed morphologies of long fibrous structures and rods which were evident in the scanning electron microscopy (SEM) and transmission electron microscopy (TEM) images. The crystallinity index of cellulose in the form of CNCs was calculated from powder X-ray diffraction (P-XRD). Thermal analysis of the CNCs was obtained from thermogravimetric analysis (TGA). Attenuated total reflection-Fourier transform infrared (ATR-FTIR) was used to confirm the absence of lignin and hemicellulose in CNCs. The size distribution of CNCs was obtained by using a dynamic light scattering (DLS) which showed that all the CNCs for the 100 % IL [bmim][HSO4] pre-treatment had a length < 500 nm. It was found that [bmim][HSO4], with no DMSO, was the most effective in terms of cellulose dissolution and the crystal sizes of CNCs. The conversion of cellulose to CNCs was successful with a 80 % and 100 % conversion for 90 % [bmim][HSO4]/DMSO and 100 % [bmim][HSO4], respectively.
  • Thumbnail Image
    Item
    Effect of mechanical and chemical pulping on ionic liquid fractionation of wood chips
    (2019) Hlongwa, Nhlanhla; Deenadayalu, Nirmala; Sithole, Bruce; Andrew, Jerome Edward
    In this study, a comparison of two pulping methods namely mechanical and chemical, on the dissolution of Eucalyptus grandis (E. grandis) wood chips was undertaken. The wood chip pulp was treated with an ionic liquid (IL): 1-allyl-3-methylimidazolium chloride to extract the cellulose. The IL was mixed with unbleached mechanical pulp (UBMP), bleached mechanical pulp (BMP), unbleached kraft pulp (UBKP) and bleached kraft pulp (BKP) in ratios of 10%, 20%, 30%. Each solution contained IL, wood pulp and 2-mL of 16 v/v % of dimethyl sulfoxide (DMSO). The 30 % IL pretreatment was the most effective IL pretreatment. The cellulose yield at 30 % IL pretreatment for UBMP, BMP, UBKP and BKP was 65.12%, 63.82%, 67.43%, 67.15%, respectively. This indicated that the kraft pulping method was more effective than the mechanical pulping method for the yield of cellulose after the IL pretreatment. The Crl value at 30 % IL pretreatment was highest for UBMP (72.03%) indicating that the pretreatment used was the least effective in reducing the cellulose crystallinity. The fractions of E. grandis wood chip namely, lignin, regenerated cellulose and hemicelluloses before and after the IL pretreatment, were characterized by a variety of analytical techniques such as High-Performance Liquid Chromatography (HPLC) (carbohydrates), Fourier Transform Infra-Red Attenuated Total Reflection (FTIR-ATR) (functional groups), Pyrolysis-Gas Chromatography /Mass Spectroscopy (Py-GC/MS) (lignin fractions), Ultraviolet/Visible spectroscopy (UV/Vis) (acid soluble lignin), Thermo Gravimetric Analysis (TGA) (degradation of pulp), X-Ray Diffraction (XRD) (crystallinity) and high resolution Scanning Electron Microscopy (SEM) (morphology). Kraft pulping was the most effective method for the yield of cellulose after the [AMIM][Cl]/DMSO pretreatment. The 30% [AMIM][Cl]/DMSO pretreatment gave the highest S/G ratio indicating that minimal bleaching was required.
  • Item
    Investigation of combined effect of nitrogen, phosphorus and iron on lipid productivity of microalgae Ankistrodesmus falcatus KJ671624 using response surface methodology
    (Elsevier, 2015-02-15) Singh, Poonam; Guldhe, Abhishek; Kumari, Sheena K.; Rawat, Ismail; Bux, Faizal
    Enhancement of lipid accumulation is essential to improve the commercial feasibility of microalgal biodiesel production. An oleaginous microalgal strain, Ankistrodesmus falcatus KJ671624 was evaluated for its potential as a biodiesel feedstock in this study. The collective effect of nutrient (nitrogen, phospho-rous and iron) stresses on the lipid productivity of the selected strain was studied by response surface methodology. The highest lipid content of 59.6% and lipid productivity of 74.07 mg L−1 d−1 was obtained under nutrient stress with nitrogen 750 mg L−1, phosphorus 0 mg L−1 and iron 9 mg L−1. The photosyn-thetic behaviour validates the high lipid productivity under combined nutrient stress condition. Saturated fatty acid composition was increased by 38.49% under selected nutrient stress condition compared to BG11 medium. The enhanced lipid accumulation with suitable lipid profile (C16:0, C18:1, C18:2, C18:3) and biodiesel conversion of 91.54 ± 1.43% achieved in A. falcatus KJ671624 further confirm its potential as a promising feedstock for biodiesel production.
  • Thumbnail Image
    Item
    Physico-chemical and biotic factors influencing microalgal seed culture propagation for inoculation of a large scale raceway pond
    (African Journals Online, 2014) Mutanda, Taurai; Ranjith Kumar, R.; Bux, Faizal
    The growth of Chlorella vulgaris in open pond aquatic conditions poses serious challenges due to the interplay of both physico-chemical and biotic factors. We report here the monitoring of physico-chemical and biotic parameters affecting the propagation of C. vulgaris seed culture for inoculation of a large scale raceway pond (300 000 L capacity) in South Africa. The C. vulgarisstrain used for this purpose was isolated from a wastewater maturation pond and characterized for its potential for biomass and lipid production. The isolate was grown aseptically in 4 × 25 L aspirator bottles in BG-11 medium under ambient laboratory conditions and the culture was supplied with filtered air and exposed to 200 µmol photons per m2 per second using Gro-Lux agricultural fluorescent lights. The culture was transferred to a 500 L capacity portable pool under open conditions. This pond was used to further inoculate 3 more portable ponds. Physico-chemical and biotic growth parameters were monitored on a daily basis in the three ponds. The over reliance on fossil fuels will have a major impact on power supply in the near future if renewable sources of energy are not developed at a fast pace. The developed inoculum was subsequently used to inoculate an open raceway pond for large scale biomass production for biodiesel production.
  • Thumbnail Image
    Item
    Selective extraction of lignin from lignocellulosic biomas using ionic liquids
    (2016) Mkhize, Thandeka, Y.; Deenadayalu, Nirmala; Reddy, P.
    Globally there is a drive for the use of renewable materials for the production of biofuels or high-end value chemicals. The current production of chemicals from crude oil refining is unsustainable and leads to global warming effects. Biomass is the most attractive renewable energy source for biofuel or fine chemical production. Sugarcane bagasse is a by-product of the sugar milling industry and is abundantly available. In this study lignin was sequentially extracted using ionic liquids. The ionic liquids (ILs) 1-ethyl-3-methylimidazolium acetate ([Emim][OAc]) and triethylammonium hydrogen sulfate ([HNEt3][HSO4]) were used to fractionate the sugarcane bagasse. The pre-treatment of sugarcane bagasse was carried out at different temperatures ranging from 90 - 150 0C and reaction times ranging from 1 - 24 h in a convection oven at a 10 % biomass loading. Both ILs were able to dissolve the raw bagasse samples at 120 0C with [Emim][OAc] giving a lignin maxima of 28.8 % and a low pulp yield of 57 % after 12 h; [HNEt3][HSO4] gave a lignin recovery of 17.2 % and low pulp yield of 58.5 % after 6 h. Regenerated lignin was obtained by adding ethanol/ water to the mixture followed by vacuum filtration. The regenerated pulp materials were characterized by Scanning Electron Microscope (SEM) to study the morphology; Fourier Transform Infrared Spectroscopy (FTIR) to study the characteristic bands and thermal analysis to study the thermal stability.