Research Institutes
Permanent URI for this communityhttp://ir-dev.dut.ac.za/handle/10321/840
Browse
3 results
Search Results
Item Stable isotope turnover and variability in tail hairs of captive and free-ranging African elephants (Loxodonta africana) reveal dietary niche differences within populations(NRC Research Press, 2013) Codron, Jacqueline; Kirkman, Kevin; Duffy, Kevin Jan; Sponheimer, Matt; Lee-Thorp, Julia A.; Ganswindt, Andre; Clauss, Marcus; Codron, DarylMany herbivore species expand their dietary niche breadths by switching from browse-rich diets in dry seasons to grass-rich diets in rainy seasons, in response to phenological changes in plant availability and quality. We analyzed stable isotope series along tail hairs of captive and free-ranging African elephant (Loxodonta africana (Blumenbach, 1797)) to compare patterns of seasonal dietary variability across individuals. Results from elephants translocated from the wild into captivity, where their diets are semicontrolled, revealed tail hair growth rates of 0.34 mm/day, on average, and relatively rapid isotope turnover through the transition from wild into captivity. Sampling hairs at 10 mm increments thus archives dietary chronologies at a resolution suitable for tracking diet switches at seasonal, and even subseasonal, scales. Hairs of free-ranging elephants showed extensive carbon isotopic variability within individuals, consistent with seasonal switches between C3-browsing and C4-grazing. Similarly extensive, but asynchronous, shifts in nitrogen isotope ratios were also observed, suggesting an influence of factors other than seasonality. Across individuals, switching patterns differed across habitats, and across age classes, with older, larger animals including increasing amounts of C3 browse into their diets. These results demonstrate how stable isotope approaches characterize complex patterns of resource use in wildlife populations.Item Heavy impact on seedlings by the impala suggests a central role in woodland dynamics(Cambridge University Press, 2012-04-12) O'Kane, Christopher A. J.; Duffy, Kevin Jan; Page, Bruce R.; Macdonald, David W.Research has increasingly established that mesoherbivores influence the regeneration of woody plants. However the relationship between mesoherbivore density and degree of impact, and the spatial component of this impact, has not been well established. Using a novel sampling design, we assessed in iMfolozi Park, South Africa, the impact of impala (Aepyceros melampus) across the full complement of woody species within the home range, evaluating its spatial component and relationship to impala density. We used four GPS collars, in separate breeding herds, and a GIS to detect zones of different density of impala in the landscape, thus defining a fine-grain browsing gradient. We assessed impact on woody recruits (≤ 0.5 m height) across this gradient by means of 1600 random 1 × 1-m quadrats. Densities of woody seedlings, and mean percentage of remaining canopy, were significantly less in areas of high impala density versus low-density areas. There was a significant correlation between increasing impala density and decreasing density of favoured woody recruits. We propose a hypothesis of impala-induced patch dynamics. It seems likely that the ubiquitous impala may create and sustain a shifting mosaic of patches, and thus function as a key determinant of landscape heterogeneity.Item Using Maximum Entropy modeling to predict the potential distributions of large trees for conservation planning(Ecological Society of America, 2012-06) Smith, Alain; Page, Bruce R.; Duffy, Kevin Jan; Slotow, RobLarge trees, as keystone structures, are functionally important in savanna ecosystems, and low recruitment and slow growth makes their conservation important. Understanding factors influencing their distribution is essential for mitigation of excessive mortality, for example from management fires or large herbivores. We recorded the locations of large trees in Hluhluwe-Imfolozi Park (HiP) using GPS to record trees along 43 km of 10 m-wide transects. Maximum entropy modeling (MaxEnt) uses niche modeling to predict the distribution of a species from the probability of finding it within raster squares, based on environmental variables and recorded locations. MaxEnt is typically applied at a regional spatial scale, and here we assessed its usefulness when predicting the distribution of species at a small (local) scale. HiP has variable topography, heterogeneous soils, and a strong rainfall gradient, resulting in a wide variety of habitat types. We used locations of 179 Acacia nigrescens and 106 Sclerocarya birrea (large trees ≥ 5m), and raster environmental layers for: aspect, elevation, geology, annual rainfall, slope, soil and vegetation. A. nigrescens was largely restricted to the Imfolozi section, while S. birrea had a wider distribution across the reserve. Understanding the interaction of environmental variables dictating tree distribution may facilitate habitat restoration, and will assist planning decisions for persistence of large trees within reserves, including options to reduce fire frequency or herbivore impacts. Though the AUC (Area Under the Curve) values used to test model predictions were high for both species, the ground truthing test data showed that distribution for A. nigrescens was more accurate than that for S. birrea, highlighting the need for independent test data to assess model accuracy. We emphasize that MaxEnt can be used at finer spatial scales than those typically used for species occurrence, but models must be tested using spatially independent test data.