Repository logo
 

Faculty of Accounting and Informatics

Permanent URI for this communityhttp://ir-dev.dut.ac.za/handle/10321/1

Browse

Search Results

Now showing 1 - 2 of 2
  • Thumbnail Image
    Item
    Analysis of road traffic accidents severity using a pruned tree-based model
    (International Information and Engineering Technology Association, 2023-06-30) Adeliyi, Timothy T.; Oluwadele, Deborah; Igwe, Kevin; Aroba, Oluwasegun Julius
    Traffic accidents are becoming a global issue, causing enormous losses in both human and financial resources. According to a World Health Organization assessment, the severity of road accidents affects between 20 and 50 million people each year. This study intends to examine significant factors that contribute to road traffic accident severity. Seven machine learning models namely, Naive Bayes, KNN, Logistic model tree, Decision Tree, Random Tree, and Logistic Regression machine learning models were compared to the J48 pruned tree model to analyze and predict accident severity in the road traffic accident. To compare the effectiveness of the machine learning models, ten well-known performance evaluation metrics were employed. According to the experimental results, the J48 pruned tree model performed more accurately than the other seven machine learning models. According to the analysis, the number of casualties, the number of vehicles involved in the accident, the weather conditions, and the lighting conditions of the road, is the main determinant of road traffic accident severity.
  • Thumbnail Image
    Item
    A hybridized framework for designing and evaluating e-learning students’ performance in medical education
    (IEEE, 2022-10-27) Oluwadele, Deborah; Singh, Yashik; Adeliyi, Timothy T.
    The COVID-19 pandemic resulted in the hurried adoption of e-learning with no proper need analysis to inform the design and subsequent evaluation of students’ performance in e-learning in medical education. Consequently, several studies evaluating performance in e-learning in medical education do so by conducting pre-test and post-test with no defined framework or model to guide the evaluation. This makes the findings from these studies subjective and biased since factors that possibly impact students’ performance were neither considered in the design of the course nor measured and reported in the evaluation studies. We, therefore, introduce an essential pedagogical e-learning concept by developing a framework to inform the design and evaluation of students’ performance in e-learning in medical education via the thoughtful fusion of the Task-Technology Fit Model and the Kirkpatrick Evaluation Model. Our hybrid framework was piloted at the University of KwaZulu-Natal, Durban, South Africa and findings emphasize the need for alignment between learning tasks, technology infrastructures, individual traits, and contextual limitations of students as key factors in determining how well students perform in the classroom and their clinical practices at work. This study advances the body of knowledge by providing a well-brainstormed and intricately designed framework to guide the design of courses and evaluation of student’s performance in an e-learning context in medical education.