Repository logo
 

Faculty of Accounting and Informatics

Permanent URI for this communityhttp://ir-dev.dut.ac.za/handle/10321/1

Browse

Search Results

Now showing 1 - 2 of 2
  • Thumbnail Image
    Item
    Smart face masks for COVID-19 pandemic management : a concise review of emerging architectures, challenges and future research directions
    (Institute of Electrical and Electronics Engineers (IEEE), 2023-01-15) Fagbola, Temitayo Matthew; Fagbola, Funmilola Ikeolu; Aroba, Oluwasegun Julius; Doshi, Ruchi; Hiran, Kamal Kant; Thakur, Surendra Colin
    Smart sensing technology has been playing tremendous roles in digital healthcare management over time with great impacts. Lately, smart sensing has awoken the world by the advent of smart face masks (SFMs) in the global fight against the deadly Coronavirus (Covid-19) pandemic. In turn, a number of research studies on innovative SFM architectures and designs are emerging. However, there is currently no study that has systematically been conducted to identify and comparatively analyze the emerging architectures and designs of SFMs, their contributions, socio-technological implications, and current challenges. In this article, we investigate the emerging SFMs in response to Covid-19 pandemic and provide a concise review of their key features and characteristics, design, smart technologies, and architectures. We also highlight and discuss the socio-technological opportunities posed by the use of SFMs and finally present directions for future research. Our findings reveal four key features that can be used to evaluate SFMs to include reusability, self-power generation ability, energy awareness and aerosol filtration efficiency. We discover that SFM has potential for effective use in human tracking, contact tracing, disease detection and diagnosis or in monitoring asymptotic populations in future pandemics. Some SFMs have also been carefully designed to provide comfort and safety when used by patients with other respiratory diseases or comorbidities. However, some identified challenges include standards and quality control, ethical, security and privacy concerns.
  • Thumbnail Image
    Item
    A multiple‐input, multiple‐output broadcasting system with space, time, polarization, and labeling diversity
    (Wiley, 2022) Patel, Sulaiman Saleem; Quazi, Tahmid
    Enhancing the reliability of wireless links plays an important role in addressing the digital divide between under-developed and developed nations. Diversity techniques are used in wireless communication to improve link reliability. This article presents a broadcasting system that incorporates space, time, polarization and labeling diversity. The key challenge in incorporating labeling diversity into a system is the design of appropriate bit-to-symbol mappers. The latest technique to designing bit-to-symbol mappers is to use a genetic algorithm approach, which is applicable to any generic modulation scheme. This article presents a modified genetic algorithm mapper design algorithm based on recent advances in labeling diversity evaluation theory. The proposed system is studied under ideal (uncorrelated) conditions, as well as in the presence of inter-beam and inter-antenna inference (correlated conditions). Analytical expressions are presented to model both the correlated and uncorrelated systems, and are verified via Monte Carlo simulations. When compared to the best comparable scheme at a bit-error-rate of 10−6, results show that the proposed system improves performance by ≈7 dB for a 2 × 2 16APSK system configuration, and by ≈5 dB for both 2 × 4 32APSK and 2 × 2 64APSK system configurations. Results also show that the proposed system is highly sensitive to correlation at the transmitting node. In particular, transmit-side correlation degrades link reliability by 4 orders of magnitude for the 2 × 3 8APSK configuration studied at 25 dB