Kestrel-based search algorithm for association rule mining and classification of frequently changed items
No Thumbnail Available
Date
2016
Journal Title
Journal ISSN
Volume Title
Publisher
IEEE
Abstract
Nature inspired approaches have been used in the design of computer solutions for real life problems. These computer solutions take the form of algorithms which characterize specific behaviour of animals or birds in their natural habitat. The two bio-inspired computational concepts in modern times includes evolutionary and swarm intelligence. A novel introduction to the bio-inspired computational concepts of swarm behaviour is the study of characteristics of kestrel birds. The study presents, as a concept paper, a meta-heuristic algorithm called kestrel-based search algorithm (KSA) for association rule mining and classification of frequently changed items on big data environment. This algorithm aims to find best possible rules and patterns in dataset using minimum support and minimum confidence.
Description
Keywords
Kestrel-based search algorithm, Association rule mining, Classification, Frequently changed items, Big data environment
Citation
Agbehadji, I.E. et al. 2016. Kestrel-based search algorithm for association rule mining and classification of frequently changed items. 2016 8th International Conference on Computational Intelligence and Communication Networks. IEEE, 356-360. DOI 10.1109/CICN.2016.76