Repository logo
 

An inertial iterative method for solving split monotone inclusion problems in Hilbert spaces

dc.contributor.authorMebawondu, Akindele Adebayoen_US
dc.contributor.authorSunday, Akunna Sunsanen_US
dc.contributor.authorNarain, Ojen Kumaren_US
dc.contributor.authorMaharaj, Adhiren_US
dc.date.accessioned2024-08-28T12:49:01Z
dc.date.available2024-08-28T12:49:01Z
dc.date.issued2024
dc.date.updated2024-08-27T11:06:30Z
dc.description.abstractThe purpose of this work is to introduce and study a new type of a relaxed extrapolation iterative method for approximating the solution of a split monotone inclusion problem in the framework of Hilbert spaces. More so, we establish a strong convergence theorem of the proposed iterative method under the assumption that the set-valued operator is maximal monotone and the single-valued operator is Lipschitz continuous monotone which is weaker assumption unlike other methods in which the single-valued is inverse strongly monotone. We emphasize that the value of the Lipschitz constant is not re- quired for the iterative technique to be implemented, and during computation, the Lipschitz continuity was not used. Lastly, we present an application and also some numerical experiments to show the e ciency and the applicability of our proposed iterative method.en_US
dc.format.extent19 pen_US
dc.identifier.citationMebawondu, A.A. et al. 2024. An inertial iterative method for solving split monotone inclusion problems in Hilbert spaces. Numerical Algebra, Control and Optimization: 1-19. doi:10.3934/naco.2024039en_US
dc.identifier.doi10.3934/naco.2024039
dc.identifier.issn2155-3289
dc.identifier.issn2155-3297 (Online)
dc.identifier.urihttps://hdl.handle.net/10321/5438
dc.language.isoenen_US
dc.publisherAmerican Institute of Mathematical Sciences (AIMS)en_US
dc.publisher.urihttp://dx.doi.org/10.3934/naco.2024039en_US
dc.relation.ispartofNumerical Algebra, Control and Optimizationen_US
dc.subjectHilbert Spacesen_US
dc.subject0102 Applied Mathematicsen_US
dc.subject0103 Numerical and Computational Mathematicsen_US
dc.subject4901 Applied mathematicsen_US
dc.subjectIterative methoden_US
dc.subjectSplit monotone inclusion problemen_US
dc.subjectHilbert spaceen_US
dc.subjectLipschitzen_US
dc.titleAn inertial iterative method for solving split monotone inclusion problems in Hilbert spacesen_US
dc.typeArticleen_US

Files

Original bundle

Now showing 1 - 2 of 2
No Thumbnail Available
Name:
NACO Copyright Clearance.docx
Size:
147.87 KB
Format:
Microsoft Word XML
Description:
Thumbnail Image
Name:
Mebawondu_Maharaj et al_2020.pdf
Size:
449.17 KB
Format:
Adobe Portable Document Format
Description: