Algebraic structures of generalised symmetries of n th-order scalar ordinary differential equations of maximal lie point symmetry
dc.contributor.author | Charalambous, K. | |
dc.contributor.author | Leach, P. G. L. | |
dc.date.accessioned | 2016-04-29T06:43:47Z | |
dc.date.available | 2016-04-29T06:43:47Z | |
dc.date.issued | 2015-05-01 | |
dc.description.abstract | We compute for the representative scalar ordinary differential equation of maximal point symmetry the generalised symmetries of order-one and two. We examine the Lie Brackets for the generalised symmetries and see that closure does not occur for generalised symmetries of order-two. Consequently all generalised symmetries up to the maximum order possible must be admitted. | en_US |
dc.dut-rims.pubnum | DUT-004928 | en_US |
dc.format.extent | 6 p | en_US |
dc.identifier.citation | Charalambous, K. and Leach, P. G. L. 2015. Algebraic structures of generalised symmetries of n th-order scalar ordinary differential equations of maximal lie point symmetry. Applied Mathematics & Information Sciences, 9(3) pp. 1175-1180. | en_US |
dc.identifier.issn | 2325-0399 | |
dc.identifier.uri | http://hdl.handle.net/10321/1477 | |
dc.language.iso | en | en_US |
dc.publisher | Natural Sciences Publishing | en_US |
dc.publisher.uri | http://www.naturalspublishing.com/files/published/37fi6h88z747n7.pdf | en_US |
dc.relation.ispartof | Applied mathematics & information sciences (Online) | |
dc.subject | Generalised symmetries | en_US |
dc.subject | nth-order scalar ODEs | en_US |
dc.subject | algebraic structures | en_US |
dc.subject | Lie Brackets MSC 2010 Numbers: 34A30 | en_US |
dc.subject | 34C14 | en_US |
dc.title | Algebraic structures of generalised symmetries of n th-order scalar ordinary differential equations of maximal lie point symmetry | en_US |
dc.type | Article | en_US |