Repository logo
 

Thermodynamic stability conditions of clathrate hydrates for refrigerant (R134a or R410a or R507) with MgCl2 aqueous solution

dc.contributor.authorNgema, Peterson Thokozanien_US
dc.contributor.authorNaidoo, Paramesprien_US
dc.contributor.authorMohammadi, Amir H.en_US
dc.contributor.authorRichon, Dominiqueen_US
dc.contributor.authorRamjugernath, Dereshen_US
dc.date.accessioned2023-03-28T13:58:31Z
dc.date.available2023-03-28T13:58:31Z
dc.date.issued2016-04-15
dc.date.updated2023-03-27T14:48:32Z
dc.description.abstractClathrate hydrate dissociation data were measured for systems comprising of refrigerants (R134a, R410a and R507) + water + MgCl2 at varying salt concentrations. The ternary system for R134a + water + MgCl2 was measured at salt concentrations of (0.259, 0.546, and 0.868) mol.kg-1 in the temperature range of (277.1-283) K and a pressure range of (0.114-0.428) MPa. Hydrate measurements for the {R410a or R507} + water + MgCl2 systems were measured at salt concentrations of (0.259 and 0.546) mol.kg-1 in the temperature range of (274.3-293) K and a pressure range of (0.154-1.421) MPa. The isochoric pressure-search method was used to measure the hydrate dissociation data. This study is a continuation of previous investigations which focused on obtaining hydrate dissociation data for R134a, R410a and R507 refrigerants in NaCl and CaCl2 aqueous solutions. The measured hydrate dissociation data can be used to design industrial wastewater treatment and desalination processes. The results show that the effect of salt concentration on hydrate formation is smaller for MgCl2 aqueous solutions compared to CaCl2 and NaCl as salt concentration increases. Modelling of the measured data is performed using a combination of the solid solution theory of van der Waals and Platteeuw, the Aasberg-Petersen et al. model, and the Peng-Robinson equation of state with classical mixing rules. The model is in good agreement with the measured hydrate dissociation data.en_US
dc.format.extent7 pen_US
dc.identifier.citationNgema, P.T. et al. 2016. Thermodynamic stability conditions of clathrate hydrates for refrigerant (R134a or R410a or R507) with MgCl2 aqueous solution. Fluid Phase Equilibria. 413: 92-98. doi:10.1016/j.fluid.2015.11.002en_US
dc.identifier.doi10.1016/j.fluid.2015.11.002
dc.identifier.issn0378-3812
dc.identifier.issn1879-0224 (Online)
dc.identifier.otherisidoc: DF7RA
dc.identifier.urihttps://hdl.handle.net/10321/4692
dc.language.isoenen_US
dc.publisherElsevier BVen_US
dc.relation.ispartofFluid Phase Equilibria; Vol. 413en_US
dc.subjectGas hydrateen_US
dc.subjectClathrate hydrateen_US
dc.subjectDesalinationen_US
dc.subjectRefrigeranten_US
dc.subjectDissociation dataen_US
dc.subjectModelen_US
dc.subject0203 Classical Physicsen_US
dc.subject0306 Physical Chemistry (incl. Structural)en_US
dc.subject0904 Chemical Engineeringen_US
dc.subjectChemical Engineeringen_US
dc.titleThermodynamic stability conditions of clathrate hydrates for refrigerant (R134a or R410a or R507) with MgCl2 aqueous solutionen_US
dc.typeArticleen_US
local.sdgSDG06

Files

Original bundle

Now showing 1 - 2 of 2
No Thumbnail Available
Name:
Fluid Phase Equilibria Copyright Clearance.docx
Size:
194.72 KB
Format:
Microsoft Word XML
Description:
Copyright clearance
Loading...
Thumbnail Image
Name:
Ngema et al 2016.pdf
Size:
663.19 KB
Format:
Adobe Portable Document Format
Description:
Article