Repository logo
 

Introducing an adaptive kernel density feature points estimator for image representation

dc.contributor.authorZuva, Tranosen_US
dc.contributor.authorOlugbara, Oludayo O.en_US
dc.contributor.authorOjo, Sunday O.en_US
dc.contributor.authorNgwira, Seleman M.en_US
dc.date.accessioned2014-05-15T08:33:16Z
dc.date.available2014-05-15T08:33:16Z
dc.date.issued2012-06
dc.description.abstractThis paper provides an image shape representation technique known as Adaptive Kernel Density Feature Points Estimator (AKDFPE). In this method, the density of feature points within defined rings (bandwidth) around the centroid of the image is obtained in the form of a vector. The AKDFPE is then applied to the vector of the image. AKDFPE is invariant to translation, scale and rotation. This method of image representation shows improved retrieval rate when compared to Kernel Density Feature Points Estimator (KDFPE) method. Analytic analysis is done to justify our method, which was compared with the KDFPE to prove its robustness.en_US
dc.dut-rims.pubnumDUT-002021en_US
dc.format.extent7 pen_US
dc.identifier.citationTranos Z.; Oludayo, O.O.; Sunday, O.O. and Seleman, M.N. 2012. Introducing an Adaptive Kernel Density Feature Points Estimator for Image Representation. International Conference on Computer Science, Engineering and Technology.en_US
dc.identifier.issn2091-0266
dc.identifier.urihttp://hdl.handle.net/10321/980
dc.language.isoenen_US
dc.publisherIJITCSen_US
dc.publisher.urihttp://www.ijitcs.comen_US
dc.subjectKernel Density Functionen_US
dc.subjectSimilarityen_US
dc.subjectImage Representationen_US
dc.subjectSegmentationen_US
dc.subjectDensity Histogramen_US
dc.subject.lcshImage segmentationen_US
dc.titleIntroducing an adaptive kernel density feature points estimator for image representationen_US
dc.typeArticleen_US

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
zuva__olugbara__ojo___ngwiral_2012_non_acc_output-2.pdf
Size:
116.49 KB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
2.22 KB
Format:
Item-specific license agreed upon to submission
Description: