Repository logo
 

Artificial intelligence-based modeling of compressive strength of slurry infiltrated fiber concrete

dc.contributor.authorOyebisi, Solomonen_US
dc.contributor.authorShammas, Mahaad Issaen_US
dc.contributor.authorSani, Reubenen_US
dc.contributor.authorOyewola, Miracle Olanrewajuen_US
dc.contributor.authorOlutoge, Festusen_US
dc.date.accessioned2025-01-23T20:15:51Z
dc.date.available2025-01-23T20:15:51Z
dc.date.issued2024-12
dc.date.updated2025-01-09T09:39:49Z
dc.description.abstractThe purpose of this paper is to develop a reliable model that would predict the compressive strength of slurry infiltrated fiber concrete (SIFCON) modified with various supplementary cementitious materials (SCMs) using artificial intelligence approach.</jats:p> </jats:sec> <jats:sec><jats:title content-type="abstract-subheading">Design/methodology/approach</jats:title> <jats:p>This study engaged the artificial intelligence to predict the compressive strength of SIFCON through deep neural networks (DNN), artificial neural networks, linear regression, regression trees, support vector machine, ensemble trees, Gaussian process regression and neural networks (NN). A thorough data set of 387 samples was gathered from relevant studies. Eleven variables (cement, silica fume, fly ash, metakaolin, steel slag, fine aggregates, steel fiber fraction, steel fiber aspect ratio, superplasticizer, water to binder ratio and curing ages) were taken as input to predict the output (compressive strength). The accuracy and reliability of the developed models were assessed using a variety of performance metrics.</jats:p> </jats:sec> <jats:sec><jats:title content-type="abstract-subheading">Findings</jats:title> <jats:p>The results showed that the DNN (11-20-20-20-1) predicted the compressive strength of SIFCON better than the other algorithms with <jats:italic>R</jats:italic><jats:sup>2</jats:sup> and mean square error yielding 95.89% and 8.07. The sensitivity analysis revealed that steel fiber, cement, silica fume, steel fiber aspect ratio and superplasticizer are the most vital variables in estimating the compressive strength of SIFCON. Steel fiber contributed the highest value to the SIFCON’s compressive strength with 16.90% impact.</jats:p> </jats:sec> <jats:sec><jats:title content-type="abstract-subheading">Originality/value</jats:title> <jats:p>This is a novel technique in predicting the compressive strength of SIFCON optimized with different SCMs using supervised learning algorithms, improving its quality and performance.</jats:p> </jats:sec>en_US
dc.format.extent20 pen_US
dc.identifier.citationOyebisi, S. et al. 2024. Artificial intelligence-based modeling of compressive strength of slurry infiltrated fiber concrete. World Journal of Engineering: 1-20. doi:10.1108/wje-05-2024-0303en_US
dc.identifier.doi10.1108/wje-05-2024-0303
dc.identifier.issn1708-5284
dc.identifier.urihttps://hdl.handle.net/10321/5732
dc.language.isoenen_US
dc.publisherEmeralden_US
dc.publisher.urihttps://doi.org/10.1108/wje-05-2024-0303en_US
dc.relation.ispartofWorld Journal of Engineeringen_US
dc.subject0905 Civil Engineeringen_US
dc.subject0906 Electrical and Electronic Engineeringen_US
dc.subject0912 Materials Engineeringen_US
dc.subject4016 Materials engineeringen_US
dc.subject4017 Mechanical engineeringen_US
dc.subjectArtificial intelligence (AI)en_US
dc.subjectCementen_US
dc.subjectCompressive strengthen_US
dc.subjectSlurry infiltrated fiber concreteen_US
dc.subjectModelingen_US
dc.subjectSteel fiberen_US
dc.titleArtificial intelligence-based modeling of compressive strength of slurry infiltrated fiber concreteen_US
dc.typeArticleen_US

Files

Original bundle

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
Oyebisi et al_2024.pdf
Size:
3.32 MB
Format:
Adobe Portable Document Format
Description:
No Thumbnail Available
Name:
World Journal of Engineering Copyright Clearance.docx
Size:
249.81 KB
Format:
Microsoft Word XML
Description: