Symmetrized exponential oscillator
dc.contributor.author | Znojil, Miloslav | en_US |
dc.date.accessioned | 2018-05-28T05:53:49Z | |
dc.date.available | 2018-05-28T05:53:49Z | |
dc.date.issued | 2016-09-01 | |
dc.description.abstract | Several properties of bound states in potential V(x) = g² exp(Formula presented.)x(Formula presented.) are studied. Firstly, with the emphasis on the reliability of our arbitrary-precision construction, wave functions are considered in the two alternative (viz. asymptotically decreasing or regular) exact Bessel-function forms which obey the asymptotic or matching conditions, respectively. The merits of the resulting complementary transcendental secular equation approaches are compared and their applicability is discussed. | en_US |
dc.dut-rims.pubnum | DUT-005815 | en_US |
dc.format.extent | 14 p | en_US |
dc.identifier.citation | Znojil, M. 2016. Symmetrized exponential oscillator. Modern Physics Letters A. 31(34): 1-14. | en_US |
dc.identifier.issn | 0217-7323 (print) | |
dc.identifier.issn | 1793-6632 (online) | |
dc.identifier.uri | http://hdl.handle.net/10321/2982 | |
dc.language.iso | en | en_US |
dc.publisher | World Scientific Publishing | en_US |
dc.publisher.uri | https://arxiv.org/pdf/1609.00166.pdf | en_US |
dc.relation.ispartof | Modern physics letters A (Online) | en_US |
dc.subject | Quantum bound states | en_US |
dc.subject | Exactly solvable models | en_US |
dc.subject | Bessel special functions | en_US |
dc.subject | Transcendental secular equation | en_US |
dc.subject | Numerical precision | en_US |
dc.title | Symmetrized exponential oscillator | en_US |
dc.type | Article | en_US |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- Znojil_MPLA_Vol31#34_Pg1-14_2016.pdf
- Size:
- 712.43 KB
- Format:
- Adobe Portable Document Format
- Description:
License bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- license.txt
- Size:
- 2.22 KB
- Format:
- Item-specific license agreed upon to submission
- Description: