Isolation and characterization of Bacillus spp. for use in the remediation of petroleum waste residues
Date
2020
Authors
Masika, Wendy Snoyolo
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
Petroleum hydrocarbons are toxic to all forms of life; therefore, environmental pollution
caused by petroleum is of great concern. Environmentally friendly strategies are
required for the remediation of the contaminated sites. Microbial populations
comprising of several different genera have been detected in soil and water
environments that have been contaminated with petroleum. This suggests that these
organisms are able to use hydrocarbon compounds as a substrate for survival and
could be harnessed in bioremediation of contaminated sites. The first stage of this
research was focussed on the isolation, purification, screening and selection of
putative Bacillus spp from environmental samples. Samples were collected from
different sites around the Gauteng province in South Africa. Samples from both soil
and water were obtained from selected sites including environments that were
contaminated by oil. Isolate selection was based on the growth rate of the isolates, the
degree of sporulation and the rate of oil degradation. The identities of the potential
isolates as well as their safety status were clarified in order to reduce possible risk to
end users or the environment. Once suitable isolates were identified, those that
possessed inherently strong biodegradation ability were assessed for their efficacy as
well as compatibility to perform in a consortium. Various organism combinations were
assessed and compared to the efficacy of individual isolates, in order to formulate a
bioremediation consortium. Of the 115 isolates, the top performing isolates, identified as GPA 11.2, GPA 7.1, GPA
3.5, GPA 8.3 and GPB 4.4, were obtained from a car workshop in Midrand and a taxi
rank in Silverton. GPA 8.3 and GPA 4.4 were, however, eliminated due to their low
sporulation efficiency.
The selected Bacillus isolates were identified using 16s rDNA sequencing and GPA
7.1 and GPA 11.2 were identified as B. subtilis, while GPA 3.5 was identified as B.
methylotrophicus. These isolates were further assessed for enterotoxin production
and the presence of anthrax virulent plasmids pX01 and pX02. After conducting the
biosafety assays, the isolates were rendered safe for use.
The bioremediation potential of the consortium was evaluated using industrial effluents
that contained hydrocarbons. Degradation of hydrocarbons using all three
consortiums (Gen 3.1, Gen 3.2, Gen 3.3) in the respective industrial effluents were
determined by measuring the rate of degradation for each hydrocarbon compound
using Gas Chromatography (GC). Results indicated that the bulk of the contaminants
were removed during the first 48 hours; and removal (%) did not increase significantly
after 72 hours. The total petroleum hydrocarbons (TPH) (C8-C28) removal rates from
synthetic effluent after 48 hours of treatment using the Gen 2, Gen 3.1, Gen 3.2 and
Gen 3.3 consortia were 0.8, 0.26, 0.07 and 0.58 mg.L-1.h-1, respectively. The TPH (C8-
C28) removal rate from true effluents after 48 hours of treatment using the Gen 2
(benchmark), Gen 3.1, Gen 3.2 and Gen 3.3 consortia were 0.23, 0.25, 0.12 and 0.17
mg.L-1.h-1, respectively. The results showed that the best performing consortium was Gen 3.1.This study has demonstrated the potential application of Bacillus as bioremediation agents for the treatment of hydrocarbon-contaminated sites. This technology could potentially also be utilised for addressing the challenges of a wider range of different hydrocarbon effluents.
Description
Submitted in fulfilment of the degree of Master of Applied Science: Biotechnology in the Faculty of Applied Sciences at the Durban University of Technology, 2020.
Keywords
Citation
DOI
https://doi.org/10.51415/10321/3795