Quantum-statistical approach to electromagnetic wave propagation and dissipation inside dielectric media and nanophotonic and plasmonic waveguides
Date
2016
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
American Physical Society
Abstract
Quantum-statistical effects occur during the propagation of electromagnetic (EM) waves inside the dielectric
media or metamaterials, which include a large class of nanophotonic and plasmonic waveguides with dissipation
and noise. Exploiting the formal analogy between the Schr¨odinger equation and the Maxwell equations for
dielectric linear media, we rigorously derive the effective Hamiltonian operatorwhich describes such propagation.
This operator turns out to be essentially non-Hermitian in general, and pseudo-Hermitian in some special cases.
Using the density operator approach for general non-Hermitian Hamiltonians, we derive a master equation that
describes the statistical ensembles of EM wave modes. The method also describes the quantum dissipative and
decoherence processes which happen during the wave’s propagation, and, among other things, it reveals the
conditions that are necessary to control the energy and information loss inside the above-mentioned materials.
Description
Keywords
Citation
Zloshchastiev, K. G. 2016. Quantum-statistical approach to electromagnetic wave propagation and dissipation inside dielectric media and nanophotonic and plasmonic waveguides. Physical Review. Vol 94 (11) : 115136-01- 115136-18.