Repository logo
 

On first integrals of second-order ordinary differential equations

dc.contributor.authorMeleshko, Sergeyen_US
dc.contributor.authorMoyo, Sibusisoen_US
dc.contributor.authorMuriel, C.en_US
dc.contributor.authorRomero, J. L.en_US
dc.contributor.authorGuha, P.en_US
dc.contributor.authorChoudhury, A. G.en_US
dc.date.accessioned2013-01-28T08:54:11Z
dc.date.available2013-01-28T08:54:11Z
dc.date.issued2013-01-08
dc.description.abstractHere we discuss first integrals of a particular representation associated with second-order ordinary differential equations. The linearization problem is a particular case of the equivalence problem together with a number of related problems such as defining a class of transformations, finding invariants of these transformations, obtaining the equivalence criteria, and constructing the transformation. The relationship between the integral form, the associated equations, equivalence transformations, and some examples are considered as part of the discussion illustrating some important aspects and properties.en_US
dc.dut-rims.pubnumDUT-001986en_US
dc.format.extent14 pen_US
dc.identifier.citationMeleshko, S.V., Moyo, S., Muriel, C., Romero, J.L., Guha, P. and Choudhury, A.G. 'On first integrals of second-order ordinary differential equations. Journal of Engineering and Mathematics. 78, 1 (2013).en_US
dc.identifier.doihttp://dx.doi.org/10.1007/s10665-012-9590-9
dc.identifier.urihttp://hdl.handle.net/10321/822
dc.language.isoenen_US
dc.publisherSpringeren_US
dc.publisher.urihttp://dx.doi.org/10.1007/s10665-012-9590-9en_US
dc.subjectEquivalence transformationsen_US
dc.subjectLinearizationen_US
dc.subjectODEsen_US
dc.subjectλ-Symmetryen_US
dc.subject.lcshODEsen_US
dc.subject.lcshDifferential equationsen_US
dc.subject.lcshDifferential equations, Linearen_US
dc.titleOn first integrals of second-order ordinary differential equationsen_US
dc.typeArticleen_US

Files

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
2.22 KB
Format:
Item-specific license agreed upon to submission
Description: