Repository logo
 

Credit score prediction using genetic algorithm-LSTM technique

dc.contributor.authorAdisa, Julianaen_US
dc.contributor.authorOjo, Samuelen_US
dc.contributor.authorOwolawi, Piusen_US
dc.contributor.authorPretorius, Agnietaen_US
dc.contributor.authorOjo, Sunday O.en_US
dc.date.accessioned2023-03-28T14:18:07Z
dc.date.available2023-03-28T14:18:07Z
dc.date.issued2022-03
dc.date.updated2023-03-16T14:54:05Z
dc.description.abstractIn data mining, the goal of prediction is to develop a more effective model that can provide accurate results. Prior literature has studied different classification techniques and found that combining multiple classifiers into ensembles outperformed most single classifier approaches. The performance of an ensemble classifier can be affected by some factors. How to determine the best classification technique' Which combination method to employ' This paper applies Long Short-Term Memory (LSTM), one of the most advanced deep learning algorithms which are inherently appropriate for the financial domain but rarely applied to credit scoring prediction. The research presents an optimization approach to determine the optimal parameters for a deep learning algorithm. The LSTM parameters are determined using an optimization algorithm. The LSTM parameters include epochs, batch size, number of neurons, learning rate and dropout. The results show that the optimized LSTM model outperforms both single classifiers and ensemble models.en_US
dc.format.extent6 pen_US
dc.identifier.citationAdisa, J. et al. 2022. Credit score prediction using genetic algorithm-LSTM technique. 2022 Conference on Information Communications Technology and Society (ICTAS). Presented at: 2022 Conference on Information Communications Technology and Society (ICTAS). doi:10.1109/ictas53252.2022.9744714en_US
dc.identifier.doi10.1109/ictas53252.2022.9744714
dc.identifier.isbn9781665440172
dc.identifier.urihttps://hdl.handle.net/10321/4694
dc.language.isoenen_US
dc.publisherIEEEen_US
dc.relation.conference2022 Conference on Information Communications Technology and Society (ICTAS)en_US
dc.subjectLong short-term memoryen_US
dc.subjectGenetic algorithmsen_US
dc.subjectCredit scoringen_US
dc.subjectCredit predictionen_US
dc.titleCredit score prediction using genetic algorithm-LSTM techniqueen_US
dc.typeConferenceen_US

Files

Original bundle

Now showing 1 - 2 of 2
No Thumbnail Available
Name:
IEEE Copyright clearance.docx
Size:
227.39 KB
Format:
Microsoft Word XML
Description:
Copyright clearance
Thumbnail Image
Name:
Adisa_Ojo et al_2022.pdf
Size:
418.36 KB
Format:
Adobe Portable Document Format
Description:
Article