Repository logo
 

Algebraic and singularity properties of a class of generalisations of the Kummer–Schwarz equation

dc.contributor.authorSinuvasan, R.en_US
dc.contributor.authorTamizhmani, K. M.en_US
dc.contributor.authorLeach, P. G. L.en_US
dc.date.accessioned2017-03-08T11:13:23Z
dc.date.available2017-03-08T11:13:23Z
dc.date.issued2016-09-28
dc.description.abstractThe Kummer–Schwarz Equation, 2y′y′′′−3y′′2=0, (the prime denotes differentiation with respect to the independent variable x) is well known from its connection to the Schwartzian Derivative and in its own right for its interesting properties in terms of symmetry and singularity. We examine a class of equations which are a natural generalisation of the Kummer–Schwarz Equation and find that the algebraic and singularity properties of this class of equations display an attractive set of patterns. We demonstrate that all members of this class are readily integrable.en_US
dc.dut-rims.pubnumDUT-005599en_US
dc.format.extent10 pen_US
dc.identifier.citationSinuvasan, R., Tamizhmani, K.M. & Leach, P.G.L. Algebraic and singularity properties of a class of generalisations of the Kummer–Schwarz equation. Differ Equ Dyn Syst 28, 315–324 (2020). https://doi.org/10.1007/s12591-016-0327-5en_US
dc.identifier.doihttps://doi.org/10.1007/s12591-016-0327-5
dc.identifier.issn0971-3514 (print)
dc.identifier.issn0974-6870 (online)
dc.identifier.urihttp://hdl.handle.net/10321/2319
dc.language.isoenen_US
dc.publisherSpringerlinken_US
dc.relation.ispartofDifferential equations and dynamical systems (Online)en_US
dc.subjectKummer–Schwarzen_US
dc.subjectSymmetriesen_US
dc.subjectSingularitiesen_US
dc.subjectIntegrabilityen_US
dc.titleAlgebraic and singularity properties of a class of generalisations of the Kummer–Schwarz equationen_US
dc.typeArticleen_US

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
Sinuvasan_DEDS_Pgs1-10_2016.pdf
Size:
293.11 KB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
2.22 KB
Format:
Item-specific license agreed upon to submission
Description: