Repository logo
 

Survival analysis of patients with multidrug-resistant tuberculosis in KwaZulu-Natal, South Africa : a comparison of cox regression and parametric models

dc.contributor.authorMbona, Sizwe Vincenten_US
dc.contributor.authorMwambi, Henryen_US
dc.contributor.authorRamroop, Shaunen_US
dc.contributor.authorChifurira, Retiusen_US
dc.date.accessioned2024-09-09T10:31:34Z
dc.date.available2024-09-09T10:31:34Z
dc.date.issued2024-06-21
dc.date.updated2024-09-02T06:43:46Z
dc.description.abstractResearchers in medical sciences often prefer the Cox semi-parametric model instead of parametric models because of its restrictive distributional assumptions, but under certain circumstances, parametric models estimate the parameters more efficiently and powerful than the Cox model. The objective of this study was to compare the Cox and parametric models by studying a dataset of patients diagnosed with multidrug-resistant tuberculosis (MDR-TB). A total of 1 542 patients were included in the study from four decentralised sites located in rural areas and one centralised hospital in KwaZulu-Natal, South Africa from 1 July 2008 to 30 July 2012. Out of 1 542 patients with MDR-TB, 886 (57.5%) were cured and 245 (15.9%) died. According to the AIC, the Lognormal and Weibull regression models were the best fitting to data and the Cox regression model was the weakest. According to the results from parametric models, baseline weight of patients had an increased risk of death in both univariate and multivariate analysis. Patients with ages 31 – 40, 41 - 50 and >50 years at diagnosis had an increased risk for death in Cox proportional hazards model. In univariate analysis the data strongly supported the Lognormal regression among parametric models, while in multivariate analysis Weibull and Lognormal are approximately similar, according to Akaike Information Criterion. Although it seems that there may not be a single model that is substantially better than others, Lognormal is the most favorable as an alternative to Cox for identifying risk factors for patients with MDR-TB.en_US
dc.format.extent11 pen_US
dc.identifier.citationMbona, S.V. et al. 2024. Survival analysis of patients with multidrug-resistant tuberculosis in KwaZulu-Natal, South Africa: a comparison of cox regression and parametric models. International Journal of Science, Mathematics and Technology Learning. 31(1): 571-581.en_US
dc.identifier.issn2327-7971
dc.identifier.issn2327-915X (Online)
dc.identifier.urihttps://hdl.handle.net/10321/5467
dc.language.isoenen_US
dc.publisherCommon Ground Research Networksen_US
dc.relation.ispartofInternational Journal of Science, Mathematics and Technology Learning; Vol. 31, Issue 1en_US
dc.subjectCox Modelen_US
dc.subjectMDR-TBen_US
dc.subjectParametric modelsen_US
dc.titleSurvival analysis of patients with multidrug-resistant tuberculosis in KwaZulu-Natal, South Africa : a comparison of cox regression and parametric modelsen_US
dc.typeArticleen_US

Files

Original bundle

Now showing 1 - 2 of 2
No Thumbnail Available
Name:
IJSMTL Copyright Clearance.docx
Size:
252.4 KB
Format:
Microsoft Word XML
Description:
Loading...
Thumbnail Image
Name:
Mbona et al_2024.pdf
Size:
889.54 KB
Format:
Adobe Portable Document Format
Description: