Synthesis of nitrogen heterocycles and chalcones using multi-component reactions : a spectral and protein binding investigation
Date
2018
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
Chemicals were purchased from Merck, Sigma Aldrich. The reaction/purity of the product was monitored and accomplished by TLC. FT-IR spectra were recorded in the range of 4000-400 cm-1 on a JASCO FT/IR-460 spectrophotometer using KBr pellets. A Bruker D2 PHASER powder diffraction instrument; Cu Kα ray (wavelength λ = 0.154056 nm), was used to measure in a continuous step-scan mode: the minimum width of the stage 0.031°, equilibrium time of 256 seconds, the operating voltage to 30 kV with 10 mA. Scanning electron microscopy (Joel JSM 7600 F) was employed to characterize the morphology. High Resolution-Transmission Electron Spectroscopy was used. The BET gas sorption isotherms were measured 77 K for N2, H2, and 273 and 298 K for CO2 using Micromeritics Auto pore 9500 system. Before recording gas sorption measurements, the sample was initially dehydrated at 423 K for 24 h under vacuum. Raman Spectroscopy was measured using the detector CCD (Triaxle) and the laser (He-Ne laser 632.8 nm). A TOF-MS analyser for accurate mass measurement was used. The melting point (mp) was recorded on a Buchi B-545 apparatus using open capillary tubes.
NMR spectra were recorded in CDCl3 / DMSO-d6 on a Bruker Advance 400 MHz and 600 MHz instrument using tetramethylsilane as internal standard. In general for all compounds CDCl3 is used as a solvent, where DMSO-d6 has been used, it is mentioned in the experimental part. The chemical shifts were expressed in ppm. The following abbreviations are used in the NMR spectral data.
s - Singlet
d - Doublet
t - Triplet
q - Quartet
m - Multiplet
dd - doublet of doublet brs - broad singlet
J - Coupling constant
Description
Submitted in fulfillment of the requirements for the degree of Doctor of Philosophy: Chemistry, Durban University of Technology, Durban, South Africa, 2018.
Keywords
Citation
DOI
https://doi.org/10.51415/10321/3132