Repository logo
 

Multiobjective design of laminated plates for maximum stability using the finite element method

dc.contributor.authorWalker, Marken_US
dc.date.accessioned2011-08-01T07:54:47Z
dc.date.available2011-08-01T07:54:47Z
dc.date.issued2001
dc.descriptionOriginally published in: Composite Structures Vol. 54, No. 2-3, 2001.en_US
dc.description.abstractFinite element solutions are presented for the optimal multiobjective design of symmetrically laminated rectangular plates subject to a combination of simply supported, clamped and free boundary conditions. The design objective is the maximisation of the biaxial buckling load and resonance frequency by determining the fibre orientation optimally with the effects of bending–twisting coupling taken into account. The finite element method coupled with an optimisation routine is employed in analysing and optimising the laminated plate designs. The effect of boundary conditions and bending–twisting coupling on the optimal ply angles and the buckling load are numerically studied. In addition, the multiobjective results are also compared to single objective design resultsen_US
dc.format.extentpp. 389-393 (5 p.)en_US
dc.identifier.doi10.1016/S0263-8223(01)00114-3
dc.identifier.urihttp://hdl.handle.net/10321/646
dc.language.isoenen_US
dc.publisherElsevieren_US
dc.publisher.urihttp://dx.doi.org/10.1016/S0263-8223(01)00114-3en_US
dc.rightsThe electronic version of the article published in Composite Structures 2001, 54(2-3): 389-393 © 2001 copyright Elsevier. Composite Structures available online at: http://www.sciencedirect.com/science/article/pii/S0263822301001143en_US
dc.subjectLaminated platesen_US
dc.subjectFinite element methoden_US
dc.subjectMultiobjective designen_US
dc.titleMultiobjective design of laminated plates for maximum stability using the finite element methoden_US
dc.typeArticleen_US

Files

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
2.22 KB
Format:
Item-specific license agreed upon to submission
Description: