Repository logo
 

Display of phytase on the cell surface of Saccharomyces cerevisiae to degrade phytate phosphorus and improve bioethanol production

No Thumbnail Available

Date

2016

Authors

Xiao, Yan
Shen, Wei
Govender, Algasan
Zhang, Liang
Xianzhong, Chen

Journal Title

Journal ISSN

Volume Title

Publisher

Springer Verlag

Abstract

Currently, development of biofuels as an alternative fuel has gained much attention due to resource and environ-mental challenges. Bioethanol is one of most important and dominant biofuels, and production using corn or cassava as raw materials has become a prominent technology. However, phytate contained in the raw material not only decreases the efficiency of ethanol production, but also leads to an increase in the discharge of phosphorus, thus impacting on the environment. In this study, to decrease phytate and its phos-phorus content in an ethanol fermentation process, Saccharomyces cerevisiae was engineered through a surface-displaying system utilizing the C-terminal half of the yeast α-agglutinin protein. The recombinant yeast strain, PHY, was constructed by successfully displaying phytase on the surface of cells, and enzyme activity reached 6.4 U/g wet biomass weight. Ethanol productions using various strains were com-pared, and the results demonstrated that the specific growth rate and average fermentation rate of the PHY strain were higher 20 and 18 %, respectively, compared to the control strain S. cerevisiae CICIMY0086, in a 5-L bioreactor process by simultaneous saccharification and fermentation. More im-portantly, the phytate phosphorus concentration decreased by 89.8 % and free phosphorus concentration increased by 142.9 % in dry vinasse compared to the control in a 5-L bio-reactor. In summary, we constructed a recombinant S. cerevisiae strain displaying phytase on the cell surface, which could improve ethanol production performance and effectively reduce the discharge of phosphorus. The strain reported here represents a useful novel engineering platform for developing an environment-friendly system for bioethanol production from a corn substrate.

Description

Keywords

Bioethanol, Saccharomyces cerevisiae, Phytase, Surface-displaying expression

Citation

Xianzhong, C. et a. 2016. Display of phytase on the cell surface of Saccharomyces cerevisiae to degrade phytate phosphorus and rove bioethanol production. Bioenergy and Biofuels. 100: 2449–2458

DOI

10.1007/s00253-015-7170-4