Theses and dissertations (Applied Sciences)
Permanent URI for this collectionhttp://ir-dev.dut.ac.za/handle/10321/6
Browse
Item Application of lipid extracted algae in feed and energy production(2019) Ansari, Faiz Ahmad; Bux, Faizal; Gupta, Sanjay Kumar; Guldhe, AbhishekMicroalgae are well considered to be promising feedstocks for biodiesel production. Microalgae can be grown under different types of cultivation conditions and their biomass has tremendous potential to be used as biofuel feedstock and for other applications such as feed, food, cosmetics, pharmaceutical etc. Despite the many benefits and the significant development in the field of microalgal biodiesel production, there are several challenges including high cultivation cost and developing efficient downstream processing methods. The biomass production cost is high, which significantly hinders the use of microalgae as a feedstock. Most of the available literature is focused on upstream, single strain and single product strategy, where mainly algal lipids are used for biofuel production. Hence, for improving the sustainability of the algal biofuel production processes and related process economics, a multiple applications approach using integrated biorefinery and exploiting microalgae for environmental benefits is required. To explore the microalgal biorefinery concept it is vital to understand the various cultivation conditions and applications of biomass in different sectors. There are various strategies, which have potential to make algal biofuel technologies more economically feasible and environmentally sustainable. Use of alternative culture media, improving the biomass production and the efficiency of downstream processing (drying, cell disruption, lipid extraction etc.) algal biofuel technology economical. Utilizing lipid-extracted algae (LEA) for energy and aqua feed application will maximize overall economic return and will leave minimal residues as by-product. The major focus of this thesis was to utilize LEA as substrate for biomethane production and protein source in aquaculture feed. However, effect of preceding steps such as microalgae cultivation, biomass drying and cell disruption on major metabolites extraction was also studied. Microalgae were cultivated in different medium (domestic wastewater and BG11) and their biomass yields and biochemical composition (lipid, protein and carbohydrate) were compared. Different drying and cell disruption techniques were employed for lipid extraction and their effect on lipid, protein and carbohydrate yields were evaluated. The yield of major metabolites on whole cell and LEA were also compared. Suitable solvent systems were selected for optimum lipid extraction from wet and dry biomass with minimal toxic effect on LEA metabolites so that LEA can be further used for biomethane and aquaculture feed production. The choice of microalgae at large scale depends upon the number of factors such as their adaptability to large-scale cultivation, biomass production, major metabolites content, robustness towards the open system cultivation and contamination. In this study, S. obliquus and C. sorokiniana were cultivated in wastewater and BG11 medium at laboratory scale. Both strains are indigenous to KwaZulu-Natal. C. sorokiniana showed lower biomass and major metabolites (lipid, protein and carbohydrate) production at large scale compared to S. obliquus. Considering better adaptability to open cultivation, high biomass and metabolites yields, S. obliquus strain was selected for the LEA application study. Microalgae species, C. sorokiniana and S. obliquus were cultivated on BG11 and using different ratios of raw domestic wastewater and post-chlorinated wastewater as nutrient media. The cultivation of S. obliquus and C. sorokiniana showed biomass yield of 1.2-3.5 and 0.78-1.8 g L-1 in BG11 medium, respectively. While biomass yield observed in wastewater was 0.59-1.59 g L-1 for S. obliquus and 0.67-1.45 g L-1 for C. sorokiniana. The higher biomass yield in BG11 medium attributed to the higher nutrient contents in this medium compared to wastewater. The lipid contents for S. obliquus and C. sorokiniana were 20 and 16.5% dry cell weight (DCW), respectively when grown using BG11 medium. While increases in lipid contents of 26.25 and 29.4% DCW were found for S. obliquus and C. sorokiniana, respectively when cultivated using wastewater. Similarly, carbohydrate contents for S. obliquus and C. sorokiniana were 18 and 17% DCW, respectively for BG11 medium. Increased in carbohydrate contents of 25% for S. obliquus, 28.4% DCW for C. sorokiniana were observed for wastewater. Microalgae tend to accumulate more lipids and/or carbohydrates under nutrient stress condition. The nitrogen and phosphorus contents in wastewater are lower than BG11 medium, which were responsible for stressed condition for microalgae. With limited nutrients in wastewater compared to BG11 medium, growth of microalgae is also lower which resulted in lower protein content. Protein content for S. obliquus and C. sorokiniana in BG11 medium were 37.83-48.8 and 25-35.3% DCW, respectively. The protein contents for S. obliquus and C. sorokiniana in wastewater medium were 16.4-27.29 and 15.8-27.3% DCW, respectively. The biochemical composition depends upon the nutrient composition of the medium and cultivation conditions. The two selected microalgae have shown potential for nutrient removal while cultivated in wastewater. The removal efficiency by S. obliquus was found to be 76.13% for COD, 98.54% for nitrogen and 97.99% for phosphate. Microalgae C. sorokiniana cultivation in wastewater removed 69.38% COD, 86.93% nitrogen and 68.24% phosphates. Increased lipid accumulation in the cells was also recorded in stressed conditions due to low nutrient availability from wastewater. After harvesting of microalgae from culture media, the water content in thick algal slurry (>85% DCW) lowers the products recovery. To overcome this challenge drying and cell disruption are required to enhance the efficiency of lipid extraction. Where drying and cell disruption increase the viability of biomass for lipid extraction process. Three biomass-drying techniques viz. sun, oven and freeze-drying and four-cell disruption techniques viz. microwave, sonication, osmotic shock and autoclave disruption were studied for their effect on recovery of major metabolites from S. obliquus. Microalgae metabolites recovery from whole cell and LEA were analysed and compared. The results showed that after lipid extraction, LEA still contained comparable protein to whole algae biomass however, the carbohydrate concentration was reduced. Oven drying exhibited the highest recovery of all the major metabolites followed by freeze-drying; sun drying however, showed lower yields. Despite lower metabolites recovery sun-drying technique is preferable at large scale due to its easy application and cost-effective nature. The main drawback of sun drying technique is weather dependence and required longer period to dry. The microwave and autoclave microalgal cell disruption improved the lipid yield but loss of other compounds was observed. In osmotic shock treatment, due to poor cell disruption efficiency low lipid were obtained and comparably lower protein loss was noticed during lipid extraction. Lipid extraction is crucial step for microalgae biodiesel production. Solvent-assisted lipid extraction is widely used technique for lipid recovery from dry or wet algae biomass. In a biorefinery approach, it is vital to choose appropriate solvents for the optimum lipid extraction whilst having minimal effect on the remaining metabolites (protein and carbohydrates) in LEA. LEA could be used for energy generation or aquaculture feed applications. Six commonly used organic solvents/ solvent systems were used for lipid extraction from wet and dry biomass. The results showed that the lipid extraction efficiency depends strongly on types of biomass as well as solvent systems selected. Lipid extraction from wet algal biomass could reduce the processing steps and save energy incurred in drying. However, the water present in wet algal slurry acts as a barrier, which results in lower lipid yield compared to the dry biomass. The results revealed that among all six-selected solvents, chloroform: ethanol (1:1 v/v) was most effective if wet biomass used specifically for lipid purpose only. To explore the biorefinery concept, isopropanol/hexane composition is the most suitable solvent system because it is less toxic and resulted in high protein (20.07% DCW) and carbohydrate (22.87%) yields in LEA. For dry algal biomass, chloroform: methanol (2:1 v/v) is an appropriate solvent system if biomass used especially for lipid (19.25%) extraction. If LEA to be used for energy and/or aquaculture feed application, DCM: methanol was found to be a suitable solvent system, which gave 32.79% protein and 26.92% carbohydrate yield. Comparatively hexane has lower lipid recovery but shown higher protein and carbohydrate yield in LEA. Due to less toxic, easy to scale up and inexpensive, hexane is preferable as a solvent for lipid extraction if LEA is to be further utilized at large scale for energy or feed application. Anaerobic digestion (AD) of organic residues is well-researched technology for biomethane production. Whole microalgae and LEA has promising potential for biomethane production. The anaerobic sludge used as inoculum for microalgal biomass digestion. Biomethane production from whole algae and products extracted algae highly depends on sludge to algae biomass ratio for higher methane production. The extraction of metabolites also changes the biochemical composition of residual biomass, which can affect the biomethane production. It is vital to understand the effect of various product-extracted algae and as well as pre-treated algae on the biochemical methane potential. In order to compare biomethane potential, four types of biomass were selected namely sun dried powder algae (SDPA), mild heat-treated algae (MHTA), LEA (using hexane as lipid extracting solvent) and protein-extracted algae (PEA). The average methane (CH4) production rate was ~ 2.5 times higher for protein and lipid extracted algae than for whole algae SDPA and MHTA whilst the cumulative CH4 production was higher for pre-treated algae. Highest cumulative CH4 production (318.7mL CH4 g-1 VS) was found for MHTA followed by SDPA (307.4mL CH4 g-1 VS). The CH4/CO2 ratios of 1.5 and 0.7 were observed for MHTA and LEA, respectively. Outcome of this objective revealed that pre-treatment process disrupts the microalgae cell walls, exposing intracellular material and increasing the surface area. The product-extracted algae changes the elemental composition, which decreases the cumulative gas yield CH4/CO2 ratio. Presence of high nitrogen in the form of protein produces ammonia (NH3) which inhibits the methane production. Therefore, it is imperative to use PEA biomass to improve the methane production yield than the whole cell biomass. Due to escalating price and unstable supply of fish meal (FM), alternative protein sources are used in aqua feed, however these sources do not meet to the requirement. The use of less expensive protein source in aquaculture feed as alternative to FM is required. Microalgae are primary producers in the food chain as well as a natural food for fish. Microalgal biomass is comprised of proteins, lipids, carbohydrates, pigments and many other bioactive compounds. The microalgal proteins have an appropriate balance of all essential amino acids, while lipids are rich in polyunsaturated fatty acids (omega-3 fatty acids, EPA, DHA). Whole algae contain all required ingredients while LEA also contain protein, carbohydrates, vitamins, bioactive compounds even though most of the lipid soluble nutrients have been removed. Thus, microalgae have promising potential to be used in aquaculture feed. Aquaculture production continues to increase globally, to meet the aquaculture feed demand algae supplemented aquaculture feed will play an important role in providing good quality fish. In this study, approximately 200 kg of microalgal biomass was harvested for the feed application. Due to lower toxicity, ease of availability and ease of recovery from mixture, hexane was used as a lipid extracting solvent at pilot scale to generate LEA. The 44 weeks (from juvenile to finisher stage) feeding trials were conducted to evaluate the effect of whole and LEA supplementation of S. obliquus strain on growth performance, disease tolerance, feed utilization, physiological activity, and fillet biochemical composition of Nile tilapia (Oreochromis niloticus). In the first trial, fish were fed with an algae free diet (control) and four experimental diets (2.5, 5, 7.5 and 10 wt%) as protein source of dried S. obliquus. The study showed that microalgae could be used as a protein supplement in the Tilapia feed for enhancement of morphological characteristics and nutritional value. The 7.5% and 10% supplementation of whole algal biomass in tilapia feed showed significant improvement in weight and length of the fish compared to the control. The daily body weight gain was 0.25 g higher in experimental groups than the control. The hepatosomatic index percentage was also higher in fish feed when 7.5% whole algae was used in fish feed as a protein source. The results also showed that 7.5% and 10% have better specific growth rate (1.57 and 1.5%), daily body weight gain (1.1 and 0.86 g), overall body weight gain (427.16 and 331.48 g), protein assimilation (43.96 and 40.46%) higher than the control diet fed fish. The survival rate of fish were 100% at every inclusion level. In second trial (44 weeks), two supplementations (7.5 and 10 wt%) of LEA as protein source were used in Nile tilapia diets. Results showed 7.5% and 10% LEA supplemented feed shown better growth performance than control. The protein content were 42.2%, 41.3% and 36.1% in tilapia fed with 7.5%, 10% LEA and control feed, respectively. The body weight gain, tilapia fed with 7.5% LEA shown 357 g while 10% LEA and control have 331.78 g, and 330.08 gm, respectively. The application of whole and LEA of S. obliquus in tilapia feed, shown appropriate supplementation level for tilapia feed at demonstration scale. This thesis presents advances in knowledge in the field of microalgae biorefinery research for pilot scale operations. This research work has covered various aspects such as effect of drying, cell disruption and lipid extraction on whole and LEA metabolites yield. The extraction of lipid from wet and dry microalgal biomass using various solvent systems provides a new insight for the selection of appropriate solvent systems, which can be used for the large-scale lipid extraction. The study on LEA for biomethane production enhances the understanding about the effects of different pre-treatments and product extractions on biomethane production. The results revealed that the supplementation of whole cell and LEA using S. obliquus for tilapia feed is safe therefore, can be used as an alternative protein source. The findings of this study have both academic and industrial value.Item Characterisation of biodiesel from Litsea glutinosa(2014-08-08) Perumal, Alicia Ann; Odhav, BhartiGlobal warming is a major concern to the world’s population. It is caused by greenhouse gases that result from the burning of fossil fuel. The fossil fuel reserves are rapidly depleting as the needs and wants of man in the world increases. Biodiesel is one of the solutions proposed to remedy this environmental crisis facing the world today. The aim of this study was to characterise the biodiesel that can be produced from the oil of Litsea glutinosa by transesterification. Biodiesel can be used in a diesel engine without modification and be produced from many different natural renewable oil sources such as algae, plants and kitchen waste material. Jatropha curcas has been identified as a potential producer of oil for biodiesel. The biodiesel properties of Jatropha curcas meet the required American Society for Testing and Materials (ASTM) standards. The fruit of Jatropha curcas contains 40.0% lipids. The oil has a saponification number of 202.6 and an iodine value of 93.0. However Jatropha curcas cannot be grown in South Africa because it is a highly invasive plant. Cetane number is the most important parameter of biodiesel. The higher the cetane value, the better the quality of the biodiesel. Oil from Jatropha curcas has a cetane number of 57.1. An alternative is the oil from Litsea glutinosa, which is found as a naturalised free forest along the South African coastline, and is also found in many Asian countries. It has many medicinal properties, however, it is not edible and hence its use for biodiesel does not add to the debate of fuel versus food production. The cetane number of oil from Litsea glutinosa is 64.79, which is ideal for ignition, and the fruit with 61.29% lipids can yield valuable quantities of biodiesel. Thus, the aim of the research was to determine the potential of Litsea glutinosa as a source of biodiesel. Furthermore, to maintain a sustainable source, Litsea glutinosa was micropropagated, and transformation of Litsea glutinosa was attempted for hairy root cultures. The Clevenger apparatus was used to extract fatty acids from dried crushed fruit of Litsea glutinosa. Fatty acids were converted to fatty acid methyl esters by transesterification. Transesterification was conducted in the presence of nitrogen and the reaction was catalysed with a mixture of methanol and sodium hydroxide (NaOH). The ratio 1 : 3 of oil to catalyst mixture was used for optimum transesterification to ensure a forward reaction and it was transferred to a separating funnel to allow the glycerol and fatty acid methyl esters to separate. GC-MS was used to determine the fatty acids. The iodine number, saponification number, acid value, viscosity, kinematic viscosity, density, specific gravity, thermostability, distillation point and sulphur content were determined. The seeds of Litsea glutinosa were germinated and tissue culture callus was produced from the seeds and leaves. The leaves and stems were used to produce hairy root cultures by inoculating them with Agrobacterium rhizogenes. Litsea glutinosa yielded 61% oil, which included 47 fatty acids in the fruit and 24 fatty acids in the seeds. The fatty acid profile of the oils indicated that the predominant fatty acids present were those that are essential for good quality biodiesel. The dominant fatty acids found in the fruit were 65.4% 9-octadecenoic acid and 13.6% hexadecanoic acid. The dominating fatty acids found in the seeds contained 36.3% 9-octadecenoic acid, 13.9%, hexadecanoic acid and 39.1%, dodecanoic acid. The iodine value was 6.3. The saponification value was 274. The acid value was 0.45 mg KOH. g-1. The viscosity was 22.48 mm2. s-1 and the kinematic viscosity was 23.84 mm2. s-1. The density was 942.69 kg. m-3 and the specific gravity was found to be 0.9 g. cm-3. The distillation temperature ranged between 52.2°C to 610.2°C. The sulphur content was found to be 383 µg. ml-1. These characteristics indicate that Litsea glutinosa can be used as a source of biodiesel, because the properties meet the required ASTM standards. However, the production of biodiesel from Litsea glutinosa has not been commercialised because the production of fuel is dependent on the fruit of the plant, which is seasonal. To overcome this, a part of this study investigated micropragation of Litsea glutinosa and transformation of Litsea glutinosa by Agrobacterium rhizogenes into hairy roots and attempts where made to determine whether fatty acid could be produced by these techniques. Callus cultures were grown on MS media and McCowns woody plant media supplemented with 1 ml BAP and 1 ml 2,4-D per 1 L of media. Callus cultures were obtained in the light. However, Litsea glutinosa resisted transformation by Agrobacterium rhizogenes.Item The design and development of software simulating interactive marine radar and electronic navigation instruments based on a PC platform(1999) Cox, Kieron Michael Tesling; Stewart, M. J. M.This study was intended to develop suitable software to emulate Marine Radar and other Electronic Navigation Systems found on Merchant,vessels. This equipment includes Radar with or without Automatic Radar Plotting facilities, Navstar Global Positioning Systems, Echo Sounders, Radio Direction Finder as well as Decca Navigator. Certain of these aids are required in the Radar Simulator Specifications [ref 1] to which the SAMSA - South African Maritime Safety Authority (formerly the South African Department of Transport) adheres. SAMSA is the authority which approves Maritime training and Simulators in South Africa in compliance with International standards as laid down by, IMO - International Maritime Organisation.Item Detection and evaluation of the fate of estrogen endocrine disrupting chemicals in wastewater treatment(2014) Surujlal-Naicker, Swastika; Bux, FaizalAll over the world concerns have been raised over the possible adverse effects that may occur when exposed to chemicals that have the potential to interfere and affect the endocrine system. The concern is directed at both humans and wildlife. There is still a lack of public awareness regarding Endocrine Disrupting Chemicals (EDCs) and the harmful effects on humans and wildlife. It has only been within the last decade that South Africa began the actual task for proper management and control for water and wastewater quality. There are many ways to detect these EDCs all of which are very laborious and most of the cases these EDCs are either in the pico or nano gram per litre range, too minute for many methods to detect effectively; so therefore the research project aimed to use rapid and sensitive techniques to determine the quickest means to detect the very low concentrations of theses EDCs. Two techniques were researched, i.e., Enzyme Linked immunoassays (ELISAs) and Radio-immunoassays (RIAs). The research study thus assessed the solid phase extraction (SPE) technique for total recovery of hormones; the ELISA and RIA techniques for rapid detection of natural (estrone (E1), estradiol (E2) and estriol (E3) and synthetic ethinylestradiol (EE2) by validating the precision and reproducibility . These techniques were then applied to determine hormone EDC removal first at laboratory scale investigations and then applied to full scale wastewater treatment plants (WWTP) with different configurations in order to deduce removal efficiency of each type of plant. The next phase assessed the toxicity of individual and combined estrogen standards as well as the toxicity in the WWTPs and classify and to determine if there was a correlation between hormone concentration and toxicity in final effluents. The assessment of the SPE and the immunoassay procedures (ELISA AND RIA) using standards and controls found that both these assays can be utilised to quantify hormone estrogens in wastewater. The small sample volume required reduced the labour time and application of the procedure made it cost effective and reliable techniques. The intra-assay and inter-assay validation procedures as well as the standard recoveries confirmed reproducibility and precision of the immunoassays. The % CV were <10% for both the intra-assay and inter-assay validations. The laboratory scale investigations included the operation of a modified Ludzak-Ettinger (MLE) process which enabled control and manipulation over the operational parameters in order to establish how certain parameters influenced the removal of hormone EDCs. One such parameter that was manipulated was the sludge retention time (SRT). The MLE tests showed that the SRTs definitely have an effect on the removal of hormones from the influent as well as the overall performance of sewage treatment. The 10 day SRT proved that longer SRTs will definitely aid in the removal of hormones and possibly other EDCs in raw sewage. During the 10 day SRT the influent hormone concentrations (E1: 59.11 ng/L, E2: 61.40 ng/L) were almost double than the influent hormone concentrations (E1: 26.46 ng/L, E2: 27.60 ng/L) during the 5 day SRT, which impacted on the removal efficiency. The 5 day SRT had an overall average E2 and E1 removal of 78.11% and 81.71% respectively while the 10 day SRT had average E2 and E1 removal of 91.24 % and 80.56% respectively. The 24 hour batch test provided evidence of the reversible metabolism of the E2 hormone. This was seen by the rapid decrease of E2 and the rapid increase of E1 in less than 3 hours, which proved that E2 can be metabolized in to E1. An average reduction of 94.44% of E2 was seen after 5 hours and after 10 hours was no longer detected. After 13 hours E1 could no longer be detected. This finding also provided clarity as to the lower percentage removal of E1 during the 10 day SRT of the MLE process. The Vibrio fischeri biotox method implemented was the most economic and easiest way to conduct the toxicity tests. The validation of the test used a 52.9 mg/L K2Cr2O7 standard which provided a Cr (VI) concentration of 18.7 mg/L in the final test suspension which is the theoretical effective concentration causing 50% inhibition (EC50). This specific concentration of the Cr (VI) exhibited an EC50 at 20.08 mg/L. The toxicity investigations of the individual and mixed hormone standards revealed that at the 10 ng/L concentration the individual E2 standard had the highest percentage inhibition (%INH) of 45.99% after the 30 minute contact time (T30), and when this standard was further diluted to 5 and 1 ng/L also showed higher % INH (26.04 and 23.66 %INH, respectively) than the individual EE2 standard (21.92 %INH) at 10 ng/L. . According to the toxicity classification system and after interpretation of the data, all the hormone standards were classified as Class II as they all exhibited slight acute toxicity. The 10 ng/L E2 standard had Toxicity Units (TU) of 0.8 which was close to the Class III level; however when it was in a mixture with E1 and E3, the TU was much lower (0.6 TU). The synthetic EE2 hormone also showed slight acute toxicity and had the lowest TU of 0.4. The application of the above mentioned techniques to full scale WWTPs with different configurations showed different removal efficiencies. The WWTPs ranged from the most primary consisting of just oxidation ponds to biological trickling filters, to biological nutrient removal (BNR) to conventional activated sludge (AS) plants. Removal rates ranged from 29% to 96% for E2, 0% to 89% for E1 and 0% to 100% for EE2. The overall ranking of the WWTPs from the most efficient to least efficient in terms of hormone removal were as follows: Plant E (91%) = Plant D (before UF) (91%) > Plant B (east side) (88%) > Plant B (west side) (77%) > Plant C (east side) (71%) > Plant D (after UF) (57%) > Plant A (56%) > Plant C (west side) (12%). Using the Vibrio fischeri method to evaluate the reduction of toxicity in WWTPs C, D and E proved effective. It was seen immediately after secondary biological treatment in the clarifier effluent the toxicity was reduced. Plants C, D and E had reduced the toxicities by 100, 80 and 97 % immediately after secondary biological treatment, while after the addition of the Chlorine disinfectant in the final stage of treatment the toxicity increased having %INH of 99.9, 15.7 and 99.9 respectively. In conclusion the SPE can be used as an extraction procedure for hormones in wastewater and the immunoassays can be used as rapid techniques for quantification of hormone EDCs in wastewater. The ELISA technique proved to be the slightly superior to the RIA in terms of facilities required. The laboratory scale procedures proved that some hormones can be oxidised to other hormones and therefore longer sludge retention times may be required to improve the removal. The study of the different WWTPs configuration showed that plant configuration and operational parameters impact the removal of hormone EDCs. The composition of the influent received by the plant also has an effect on the removal, i.e., whether it’s industrial, domestic or a mixture of both. Results concluded that plants which have either mixing and/or aeration with activated sludge and longer SRTs of more than 10 days have a higher rate of hormone removal than those plants with shorter SRTs and that the activated sludge processes were capable of reducing the toxicity of the influent. Overall results indicated that hormone EDCs are indeed being discharged with the effluents from WWTPs in South Africa. However whether the concentrations left in the final effluents will still have an adverse effect on the aquatic life is a question that still remains unanswered. The aquatic ecosystems are inevitably being polluted with these EDCs and their breakdown products.Item Development of a protocol for the micropropagation of mature Eucalyptus grandis clones through somatic embryogenesis(2001) Tsewana, Andiswa; Watt, Maria PaulaBiotechnology techniques such as micropropagation VIa somatic embryogenesis offer potential significant advances in the improvement of forest species, which could sustain forest production in South Africa, as well as globally, without increased use of land. In order to apply such techniques to commercial breeding and clonal programmes of E. grandis species, it is necessary to develop reliable and efficient protocols applicable to explants of proven superior genotypes. Most of the research on E. grandis somatic embryogenesis has used the genetically variable embryos or seedlings as explant sources, which results in the propagation of material of unproven genetic value. In order to exploit somatic embryogenesis maximally for cloning of superior trees, somatic embryos have to be induced from highly selected and, hence, mature trees. The aim of this investigation was to develop such a protocol for E. grandis and to test its applicability to various E. grandis hybrids. Somatic embryos were induced from buds, stems, leaves and petioles, with petioles and buds giving the best results. Thus, these were selected for further studies which involved testing the effect of medium composition on embryogenic callus induction. Media used for this purpose contained MS or B5 nutrients, 1 mg.l' 2,4-D, 0.5 g.r! glutamine, 0.5 g.r! casein hydrolysate, 4 g.r! Gelrite and 30 or 50 g.rl sucrose. All the media tested were able to support induction of embryogenic callus, although the number of explants producing embryogenic calli was affected significantly by the media composition (10-91 %). Callus induction media with B5 nutrients seemed to have a significant effect onn the developmental stage of embryos in the callus induction medium. Presence of 50 g.r! sucrose in the callus induction medium reduced the embryo yield, but the progress of embryo development was enhanced. The callus induction medium containing B5, 1 mg.l' 2,4-D, 0.5 g.rl glutamine, 0.5 g.r! casein hydrolysate, 4 g.r! Gelrite and 30 g.l' sucrose was chosen for subsequent studies. Of all the media tested for embryo development, the medium with B5, 2.5 mg.l' 2iP, 0.5 g.r! glutamine, 0.5 g.r! casein hydrolysate, 4 g.r! Gelrite and 50 g.r! sucrose was found to be the most suitable for embryo development to the cotyledonary stage. Experiments involving incorporation of both ABA and 2iP aiming at maturation of E. grandis somatic embryos led to an increase in size of the cotyledonary embryos formed but not to germination.Item Evaluation of toxicity and biochemical characterisation of a microalgal diatom(2023-05) Beekrum, Lamees; Amonsou, Eric Oscar; Odhav, Bharti; Lalloo, RajOne ofthe critical challengesthat we face in the 21st century isthe need to feed an ever-increasing human population with increasingly limited natural resources. Microalgae have emerged as a potentialsolution for global food security as a sustainable biological food source for humans due to their nutrient-rich composition, particularly rich protein and bioactive compoundsthat provide potential benefits for human health. By establishing microalgae as a new food platform, we can increase the supply of these essential productsto address global demandsin a more efficient and environmentally sustainable way. These under-exploited organisms have been consumed in the human diet for thousands of years. Microalgae cultivation does not compete with land and resources required for traditional crops and has a superior yield compared to terrestrial crops. Diatoms are a major group of microalgae in the phytoplankton community and have the potential to be engineered into cell factoriesforthe sustainable production of bioactive compoundsin food and nutraceutical industries. This study aimed to characterise a rapidly growing marine diatom in terms of its toxicity and biochemical profile. This was done by evaluating the safety profile and biochemical composition, characterising the soluble protein, and investigating the carbohydrate profile with specific emphasis of β-glucan and its effect of cardioprotective properties on ferric-induced oxidative cardiac injury in a rat model. Based on Basic Local Alignment Search Tool (BLAST) analysis, the strain showed the closest similarity to Amphora sp. (JF834543.1) with 99.5% and istherefore represented as Amphora sp., accession number MW721231. The bacterial reverse mutation assay found no evidence of mutagenicity on the methanolic, aqueous, and hexane extracts of Amphora sp. and was found to exert low levels of cytotoxicity against Peripheral Blood Mononuclear Cells (PBMC). A 28- day acute oral toxicity assessment on male Wistar rats showed an absence of adverse effects and mortality in the rats. The biomass exhibited a low lipid profile, modest protein content, notable amino acid content, and excellent carbohydrate and mineral content. Results of this study for antioxidant assays displayed low to moderate activities. Protein extracted using three-phase partitioning (TPP) treatment showed that the protein concentration and total amino acid content were substantially higher in the protein-enriched biomass extract when compared to the dried biomass. The solubility of the protein-enriched biomass extract increased with the increase in pH within the range of pH 2 to pH 12. The biomass consisted of a simple monosaccharide profile comprising glucose, rhamnose, and mannose, and a β-glucan content of approximately 9%. The cardioprotective properties ofthe β-glucan extract on ferric-induced oxidative cardiac injury did not improve the glutathione (GSH) level significantly, it led to increased superoxide dismutase (SOD) and catalase activities, while depleting malondialdehyde (MDA), NO (nitric oxide), low-density lipoprotein cholesterol levels, and simultaneously elevating triglycerides and high-density lipoprotein (LDL) cholesterol levels. GC-MS analysis revealed a complete depletion of the lipid metabolites. Our results advocate the protective capabilities of the β-glucan extract against ferric-induced oxidative cardiac injury as portrayed by its ability to stall oxidative stress and modulate cardiac lipid metabolism while inhibiting the acetylcholinesterase and lipase activities. These results display that the β-glucan extract could be utilized as an alternative for the development of nutraceuticals for maintaining cardiac health. The diversity of food bioactive molecules obtained from microalgae makes these microorganisms a bioresource with full potential of exploitation in the food industry. The richness of compounds in microalgae can contribute to develop an algal-based food industry, focusing on producing and utilizing microalgae for innovative functional food products. Overall, this study demonstrated the potential utilization of the diatom, Amphora sp. as a potential ingredient and nutraceutical in foods.Item Fishing and fish consumption contributing to the nutrient profile, dietary diversity and food security of adult caregivers in a coastal community in Rivers State, southern Nigeria(2019-06) Legbara, Kadi Prudence; Napier, Carin E.; Hart, A.Introduction: The contribution of fishing practices and fish consumption to food and nutrition security cannot be over emphasized, particularly where large numbers of people are poor. Nutrition research has identified fish and fishery products as key components of human nutrition as well as one of the essential foods to incorporate into daily dietary food consumption based on its potential health benefits. These benefits have promoted the consumption of fish in recent times. Fish contains proteins, vitamins and fats (Omega 3 Polyunsaturated Fatty Acids) (PUFAs) among other nutrients (Domingo 2016: 979). Recently, there has been a notable increase in the harvesting of wild stocks of fish and shellfish. Oceans are currently at their maximum sustainable yields to cope with the world’s growing population and the demand for fish and shellfish. Overexploitation and the use of harmful chemicals used in harvesting fish and oil exploitation are some of the core reasons for the global decline of fish. These factors pose a threat to the ecological health of marine resources (Bennette and Dearden 2014: 107) and the economy of low-income countries whose livelihood largely depends on fishing for household and national food security sources (Sowman and Cardoso 2010: 1164). In the research community of Buguma, the decline of the fish population is attributed to the corrosion of pipelines, sabotage and mishandling of oil production operations. The petroleum and gas/oil products from this mismanagement find access directly into the rivers and creeks. The residue from these substances settles on the ocean floor, endangering the ecosystem by killing marine life such as fish and seafood. To this end, food and nutrition insecurity have become evident in the community as livelihoods are dependent on fishing and fish is a primary source of protein. Food insecurity is further aggravated by the high rate of unemployment and low educational attainment. The households are left to apply certain strategies to cope with household food shortfalls. Having to employ certain strategies to cope with food insecurity, negatively affects nutrient adequacy. Thus, inadequate nutrient intake and imbalances have resulted in poor health outcomes and malnutrition. Aim: The study aim was to determine the fishing practices and fish consumption contributing to the nutrient profile, dietary diversity and food security of adult caregivers in a coastal community. Methodology: Two hundred and forty-seven respondents were selected using a multi-stage sampling method. The sample size was calculated using a power calculation indicating that 250 respondents represents a reliable sample out of which 247 respondents completed the research instruments. Sampling procedures were multistage (cluster and random) sampling. The study was descriptive and quantitative in nature. Research tools used to collect data were a sociodemographic questionnaire, a fishing practices questionnaire, a coping strategies questionnaire, a food frequency questionnaire, 3x24-hour dietary recall questionnaires and an anthropometric measurement questionnaire. Food frequency and food security coping strategies questionnaires were compiled through focus group discussions to establish the relevant foods consumed and the respondents were interviewed for the socio-demographic, food frequency, food security coping strategies and fishing practices data. All the respondents were also weighed and measured in order to determine Body Mass Index (BMI), Waist Circumference (WC), Waist to Height Ratio (WHtR) and Blood Pressure (BP) classified in terms of World Health Organization (WHO) reference cut-off points. Socio-demographics, fishing practices, coping strategies and food frequency data were captured on Excel spread sheets and analyzed for descriptive statistics using the Statistical Package for Social Science (SPSS) version 24.0. Data from the 24-hour recall was captured and analyzed for nutrient analysis using the MRC Food Finder® version 3.0 software and comparisons were made to the recommended nutrient standards by the World Health Organization. Results: The mean age group was 31-50 years old. Sixty-one-point one percent (n=151) of the respondents were females and males made up 38.9% (n=96). Most of the fish caught by the respondents was used for consumption (64.0%; n=126) and the rest was used for income generation (36.0%; n=71). The community had on average a secondary school education (55.5%; n=137) and recorded high rates of unemployment (80.2%; n=198) with 62.3% (n=76) actively looking for employment. The respondents indicated that between one person (47.8%; n=118) and two people (46.2%; n=114) contributed to household income. Thirty-three-point two percent (n=82) had an average income of #21,000 to #30,000 (Rand value: R3100-R4000), while 25.5% had a monthly income of #31,000 to #40,000 (Rand value: R4100-R5000), accommodating six persons (42.1%; n=104) and four persons (22.3%; n=55) in the household. Thirty-seven-point seven percent (n=93) and 25.5% (n=63) respectively complained that the household “sometimes” and “always” had insufficient funds to buy food. This had led households to adopt certain coping strategies to combat food shortages. The most frequently used strategies per mean were: “relying on less expensive or preferred foods” (11.47 ±7.949), “limiting portion size” (9.73 ±2.593) and “restricting consumption by adults in order for children to eat” (8.70 ±6.628). The negative effect of applying these coping strategies adversely compromised nutrient adequacy. The 20 top consumed foods showed consumption of more energy dense foods and less fruits and vegetables. The Food Variety Score (FVS) indicated that 51 different individual food items with mean ±SD of 20.83. (±6.546) from all food groups were consumed. Vitamin K, Biotin, pantothenate, calcium, riboflavin and thiamine were below DRIs recommendation cutting across all age groups and genders. Inappropriate imbalances in food intake reflected in BMI, WC and WHtR. The mean BMI for men (25.07kg/m2) and women (27.66kg/m2) fells into the overweight category with a mean average of 26.36kg/m2 for both genders and age groups while only women (95.46cm) were majorly found to be at risk for an elevated WC/ central obesity per mean average. The WHtR at risk factor affected the female gender (88.70%; n=133, 19-50 years and 88.90%; n=18, 51+ years old) compared to their male (44.4%; n=78, 19-50 years and 61.1%; n=18, 51+years) counterparts. Mean high BP for systolic (146.9mmHg) and diastolic (92.2mmHg) BP occurred in women 51+ years old. Conclusion: This research revealed inappropriate eating patterns and increased risk of developing NCDs. The 20 top foods consumed showed consumption of mostly macronutrients and limited consumption of fruits and vegetables across both genders and all age groups. Overweight, at risk for WC and WHtR and High Blood Pressure (HBP) were an indication of the presence of NCDs. Food insecurity resulting from a jeopardized fishing livelihood, high levels of unemployment and low educational attainment were the main causes of a compromised nutritional status in the research community. The introduction of nutrition education and an alternative means of livelihood will assist in addressing the current food and nutrition insecurity.Item Identification of polyphosphate accumulating bacteria from pilot- and full scale nutrient removal activated sludges(1999) Atkinson, Blaise William; Bux, FaizalGeneral removal of phosphorus (P) from wastewater was introduced in Scandanavia in the late 1960's. At that time it was believed that P alone was limiting to algal growth and that the sole removal of P would solve the problem of eutrophication. However, we now know that both P and nitrogen (N) contribute to this deleterious effect and as such, much research has been conducted concerned with both the biological and chemical removal of these nutrients from sewage effluents. Enhanced biological phosphorus removal (EBPR), which is basically the biological accumulation of soluble P (as polyphosphate or poly-P) from the bulk liquid in excess of normal metabolic requirements, still tends to be sensitive to many external parameters and, as such, is subject to fluctuations. This makes it extremely difficult for wastewater treatment installations to achieve and maintain full compliance with strict discharge regulations. A more comprehensive understanding of the microbial community within the mixed liquor of a wastewater treatment system is therefore required which will ultimately assist in improving system design and performance. Chemical and civil engineers, when designing biological wastewater treatment systems, consider only the processes (biological or chemical) taking place within the reactor/s with little or no regard for the individual microbial species or the entire microbial community involved. Process design appears to be tackled empirically from a 'black box' approach; biological reactions or processes occurring within a system such as wastewater treatment are all lumped together and attributed to a single surrogate organism ie., the response of the surrogate to certain stimuli accounts for the total system response. This is similar to an analogy which Professor George Ekama (Dept of Civil Engineering, UCT), a leading scientist in wastewater treatment and process design, refers to where engineers, if, for example, are confronted with modelling the dynamics of carbon dioxide utilisation ofa forest, would recognise the accumulative system response and not give cognisance to each individual tree's contribution. It is true that if one had to consider every microbial species present in a highly organised community such as activated sludge, process models, designed to make quantitative and qualitative predictions as to the expected effluent quality from a particular design, would become increasingly complex and superfluous. It is evident from the countless accomplishments that engineers have succeeded, to a certain degree, in modelling wastewater treatment systems. One only has to consider the tremendous success of biological P (bio-P) removal and nitrification/denitrification processes at full-scale. However, there are limitations to this empirical approach and EBPR processes occasionally deteriorate in phosphate removal efficiency. In order to further optimise biological processes, whether they be organics oxidation, bio-P removal, nitrification or denitrification, biological community analyses will have to play a more significant role in design. The better microbial community structure and function is understood, the better the control and management of the system. With the advent of improved microbial identification and enumeration (to a certain extent) techniques (in situ), it was considered significant to investigate the mechanism ofbio-P removal and to elucidate which bacteria are actively responsible for this process. To this end, experimental work was conducted in two phases: \xAE laboratory, where samples of mixed liquor were obtained from a full-scale wastewater treatment facility exhibiting biological nutrient removal (BNR) characteristics and @ pilot plant, where an enhanced culture ofpolyphosphate accumulating organisms (PAO's) was developed and probed using molecular identification and enumeration techniques (as well as a cultivation-dependent approach). During phase \xAE of experimentatItem Isolation and characterization of prebiotic oligosaccharides from algal extracts and their effect on gut microflora(2016) Hadebe, Nontando; Odhav, BhartiPrebiotics are defined as non-digestible oligosaccharides (NDOs) or polysaccharides (NDPs), which promote the growth of beneficial lactic acid bacteria in the colon. Algae are rich in polysaccharides and can be exploited as prebiotics for functional food ingredients to improve human and animal health. Currently, inulin is the most widely used ingredient in the prebiotics market, which is produced from live plants and requires expensive production processing. There is a vast repository of marine life with algae as a major source of nutrients. Therefore, this study provides an alternative source for prebiotic production and examines marine and freshwater algae that promote the growth of two strains of Lactobacillus delbrueckii subs. (Lactobacillus lactis and Lactobacillus bulgaricus) and one strain of Bifidobacterium spp. (Bifidobacterium longum). Monosaccharides of the oligosaccharide fraction of marine and freshwater algal extracts were investigated with the use of thin layer chromatography (TLC) and high performance liquid chromatography (HPLC) after acidic hydrolysis of cell matrix polysaccharides. A total of fifty-five marine and freshwater aqueous algal extracts were assessed for their effect on the growth of L. lactis, B. longum and L. bulgaricus over a 96 hour period. Relative to the negative control, 34.5% algal extracts showed improved growth on one or more probiotic bacteria. The optimum time for maximum bacterial growth was noted at 48 h for all the tested aqueous algal extracts. Five marine and freshwater algal cultures (Spirulina platensis, Chlorococcum spp., Dunaliella salina, Scenedesmus magnus, Chlorella spp. and algal extract no. 48) from various aquatic environments in Kwa-Zulu Natal showed the best growth dynamics and demonstrated the greatest potential as sources of biomass for prebiotic production. These algal extracts were able to significantly increase the growth of at least one of the three probiotic bacteria (p < 0.05). Aqueous algal extract from S. platensis was regarded as the best algal source for prebiotics as it demonstrated a greater stimulatory effect on the growth of all three probiotic bacteria (L. lactis, B. longum and L. bulgaricus) compared to tested aqueous algal extracts and the inulin used as a positive control. The results obtained by HPLC for characterization confirmed TLC data, as xylose and galactose were detected by both chromatograms. These data indicated that xylose and galactose were present in aqueous algal extracts from S. magnus and S. platensis and galactose in aqueous algal extract no. 48. Xylose was most abundant in aqueous algal extracts from S. platensis (3mg/ml) and S. magnus (2.3mg/ml). In conclusion aqueous algal extracts from S. platensis, Chlorococcum, D. salina, S. magnus, Chlorella and algal extract no. 48 are potential sources for prebiotic production. Spirulina platensis extract was regarded as the best algal source. Xyose and galactose characterized by HPLC in algal extracts make up oligosaccharides that function as prebiotic compounds for stimulation of probiotic bacteria. There is a great scope for successful production of prebiotics from algal sources in South Africa.Item Optimization of extraction techniques for the isolation and pre-concentration of pharmaceuticals in aquatic environments(2021) Sigonya, Sisonke; Mdluli, Phumlane Selby; Chimuka, LukeThe occurrence of pharmaceuticals in South African aquatic environments has been reported in several studies. However, most of these reports focused on the occurrence of organic compounds in wastewater and surface water. There are very few studies reporting the presence and concentration of these compounds in seawater and coastal areas. Further, most studies have looked at only on one season. This study focussed on the optimisation of a SPE extraction method using Bond Elut Plexa cartridges for the identification and quantification three nonsteroidal anti-inflammatory drugs (NSAIDs), three antiretroviral drugs (ARVs) and a lipid regulator in coastal area of Durban city, South Africa covering four seasons. The optimised SPE conditions were as follows: 500 mL sample volume and at pH 5.8, 5 and 5 mL as conditioning and elution volumes, respectively. The flow rate ranging from 5 to 10 mL/min 10 and 5 mL/min as sample and elution flow rates. The extracted compounds were qualitatively and quantitatively detected by a high-performance liquid phase chromatographic instrument coupled to a photodiode array detector (HPLC-PDA). The recoveries ranged from 62 -102% with RSD values of 0.56 to 4.68% respectively for the determination of emtricitabine, tenofovir, naproxen, diclofenac, ibuprofen, efavirenz, and gemfibrozil. The analytical method was validated by spiking estuarine water samples with 5 µg L-1 of a mixture containing the target pharmaceuticals and the matrix detection limits (MDL) were established to be 0.62- 1.78 µg L-1 for the target compounds. The optimized method was applied to seasonal monitoring of pharmaceuticals at chosen study sites from winter and spring of 2019 and summer and autumn of 2020.The sum of emerging pollutants (ƩEP) were calculated based on each study site. The influent of the Kingsburgh WWTP (EFK) had the highest ƩEP of 144.88 µg L-1 in winter between the two wastewater treatment plants area in this study. The Northern WWTP influent (INN) had a total ƩEP of 117.11 µg L-1 in autumn, the Kingsburgh WWTP effluent (EFK) had a concentration 63.8 µg L-1 in autumn and a concentration 63.8 µg L-1 in summer and the Northern (EFN) had a total ƩEP of 43.97 µg L-1 in winter. A comparison between UMgeni (UR) and Kingsburgh river (KR) showed that the KR had the highest concentration of total ƩEP of 22.66 µg L-1 and UR with the total ƩEP of 18.3 µg L-1 both in winter and spring, respectively. The seawater EPs Blue Lagoon (BL) had the highest ƩEP of 46.75 µg L-1 in spring, subsequently Warner Beach bottom (WBB), Glen Ashley (GA) and Warner Beach top (WBT) with concentrations of 24.96 µg L-1 in summer, 13.29 µg L-1 in spring and 6.94 µg L-1 in autumn, respectively. Estuarine EPs had concentrations of 37.9 µg L-1 and 20.97 µg L-1 for Warner beach estuary (WE) and UMgeni estuary (UE) in winter. WBE having the highest concentration between the two. This showed a significant variation on the presence of these pharmaceuticals in different season.Item Processing of dissolving pulp in ionic liquids(2015) Tywabi, Zikhona; Sithole, B.; Deenadayalu, NirmalaThis thesis forms part of the Council for Scientific and Industrial Research, Forestry and Forest Products Research Centre (CSIR-FFP) biorefinery project which aims at developing and implementing novel industrial processes production of cellulose textile fibres. The focus of this study is to investigate the dissolution of South African Eucalyptus raw (unbleached) and final (bleached) dissolving pulp and saw dust wood in an ionic liquid (IL) 1-ethyl-3-methylimidazolium acetate [Emim][OAc] and the co-solvents [dimethylsulfoxide (DMSO)] or [dimethylformamide (DMF)] mixtures, to obtain regenerated cellulose by the further addition of water and acetone. The IL/co-solvent mixtures were able to dissolve the raw and final pulp samples at 120 ˚C for 6 hours whereas the sawdust wood dissolved in 10 hours. The IL/DMF mixture gave higher cellulose recoveries of 41.88 % for the raw pulp, 49.89 % for the final pulp sample and 32.50 % for sawdust wood while the IL/DMSO mixture gave a recovery of 15.25 % for the raw pulp sample, 36.25 % for the final pulp sample and 17.83 % for the sawdust wood sample. The regenerated cellulose materials were characterized by Fourier Transformer Infrared Spectroscopy (FTIR), Nuclear Magnetic Resonance (NMR), Scanning Electron Microscopy (SEM), Thermo gravimetric Analysis (TGA) and Powder X-Ray Diffraction (pXRD), and compared with a standard microcrystalline of cellulose. It was observed that the FTIR and NMR spectra of the regenerated cellulose and MCC were similar which then indicates that no chemical reaction occurred during the dissolution and regeneration process of cellulose. SEM and X-ray diffraction (XRD) patterns of the results showed that after dissolution the cellulose I (native form), the crystalline structure was completely converted into cellulose II (amorphous) structure, and this was due to the removal of lignin and decrease in cellulose crystallinity. TGA results showed that the regenerated cellulose samples have higher char yields compared to the MCC which is due to the IL remaining in the regenerated cellulose. It was also observed that the addition of the co-solvents decreased the viscosity of the IL mixture, facilitating dissolution of the cellulose that led to additional swelling and reduction of the recalcitrant nature of the cellulose crystalline structure and intermolecular interactions. This led to increased accessibility and dissolution of the cellulose. The findings in this study have the potential to bring ILs closer to applications for biomass technology in particular for an economically viable dissolution method for biomass because ILs have a benefit of being easily separated from the anti-solvent, which provides a simple solution for IL recycle ability and re-use. The novel aspect of this study is: . This is the first study in the South African context to examine the influence of the lignin on the dissolution and regeneration of Eucalyptus sawdust wood and dissolving pulp.Item Toxicity and biodegradability assays for hazardous landfill leachate and textile size effluents(2005) Rakgotho, Thabisile; Odhav, Bharti; Buckley, ChrisThe cumulative effects of pollution have led to increased public concern, which is resulting in strict legislation on the discharge of wastes in whatever state they are present, i.e. solid, liquid or gas. Currently, in South Africa, effluents with a high organic load are sent to landfills or marine outfall because the cost of discharge to sewer is prohibitive. In regions where there is a net surplus of rainfall, landfill sites have the potential to pollute the groundwater due to saturated soil conditions. Therefore, many landfill sites should not receive liquid effluents. If liquid wastes are disposed onto landfills, then an alternate sink is required for the treatment of the high volumes of leachate that are generated. These concentrated effluents could then be treated by biological, chemical or physical methods to reduce the pollution load in the natural water resources. In this study, anaerobic digestion has been identified as one of the biological processes that can be applied to treat high-strength or toxic organic liquid effluents, since a survey conducted by Sacks (1997) indicated that many anaerobic digesters in the KwaZulu-Natal region have spare capacity. However before high strength industrial wastes can be treated in existing anaerobic digesters, their impact on the digestion process, i.e. their toxicity and biodegradability under anaerobic conditions, needs to be determined. During this project, several high-strength or toxic industrial effluents were tested to assess their toxicity and biodegradability under anaerobic conditions. These include three synthetic textile size effluents from the textile industry (Textile effluent 1, 2, and 3) and three hazardous landfillieachates (Holfontein, Shongweni and Aloes). In addition, the components of a textile effluent, i.e., starch and wax, were tested to determine whichItem Utilization of shrimp waste for the recovery of valuable bioactive compounds(2018) Dlamini, Nosihle; Permaul, KugenShrimp waste is a major by-product of crustacean processing and represents an interesting source of bioactive molecules. In addition, its use increases the sustainability of processing fishery products. The present study reports a process developed for recovering bioactive molecules from shrimp waste through the use of chemical methods. The samples of shrimp were confirmed to be from the species Haliporoides triarthrus. The recovery of chitin was 30% of the processing waste and 30-60% chitosan (CH) from chitin. CH was characterized by FTIR analysis and exhibited a degree of deacetylation (DDA) of 72%. From the demineralization extract, CaCO3 was extracted and confirmed by FTIR. Based on a kinetic study of acid hydrolysis, it was demonstrated that chitin can be quantitatively hydrolysed into glucosamine (GlN), N-acetyl glucosamine (GlcNAc) and their respective oligomers with 32% hydrochloric acid at 60oC and qualitatively from CH with 32% hydrochloric acid at 80oC. The oligomer mixed fractions were desalted by activated charcoal extraction and the components of each fraction were analysed by TLC and HPLC. Chitooligosaccharides (COS) and N-acetly chitooligosaccharides (NAcCOS) with degrees of polymerization (DP) ranging from 2 to 6 were obtained from CH and chitin, respectively. The antimicrobial activities of chitosan, COS and NAcCOS were investigated against five gram-negative bacteria and five gram-positive bacteria. Chitosan exhibited stronger bacteriostatic effects against gram- positive bacteria than gram-negative bacteria in the presence of 1% chitosan. The oligomers showed no bacteriostatic or bactericidal effects on all tested bacteria. A total 30.74± 0.078 µg.g-1 astaxanthin was extracted with 90% acetone from the species; Haliporoides triarthrus and TLC analysis indicated that the species contained both astaxanthin and its esters. Chitosan films were obtained by solution casting of blends of chitosan with glycerol, polyethylene glycol 200 (PEG-200) and polyethylene glycol 600 (PEG-600) as plasticizers. Films were characterized by FTIR, XRD diffraction, TGA, and SEM analysis. The tensile strength and elongation at break properties of the films were also evaluated. CH films and CH/GLY blended films were translucent in appearance and the CH/PEG 200 and CH/PEG 600 films were opaque. The CH films yielded mechanically resistant films without the use of a plasticizer. These data point to the feasibility of an integrated process for isolating highly bioactive molecules, such as oligosaccharides, with a broad spectrum of applications from shrimp processing waste.